Synthesis of Graphene Oxide and Impact of Its Functionalization in the Wastewater Treatment
Dr. Sushil Kumar Sharma
Department of Pure & Applied Chemistry, University of Kota, MBS road, Kota, Rajasthan, 324005 India
Search for more papers by this authorCorresponding Author
Dr. Shobhana Sharma
Department of Chemistry, S.S. Jain Subodh P.G. College, Rambagh Circle, Bhawani Singh road, Jaipur, 302004 India
E-mail: [email protected]
Search for more papers by this authorDr. Sushil Kumar Sharma
Department of Pure & Applied Chemistry, University of Kota, MBS road, Kota, Rajasthan, 324005 India
Search for more papers by this authorCorresponding Author
Dr. Shobhana Sharma
Department of Chemistry, S.S. Jain Subodh P.G. College, Rambagh Circle, Bhawani Singh road, Jaipur, 302004 India
E-mail: [email protected]
Search for more papers by this authorAbstract
Modified Hummer's method for graphene oxide production and the potential use of functionalized graphene oxide in wastewater treatment processes are highlighted in this study. As novel adsorbents, graphene and its derivatives have gained more attention because of their remarkable physicochemical properties and unique molecular structure. A resonant delocalized electron system and several functional groups in graphene derivatives produce a range of adsorptive interactions with water contaminants. Consequently, it is a constant challenge to create efficient graphene composites by surface modification using several functional groups, polymers, or nanoparticles. The study also provides insight into new developments in the adsorption of organic contaminants and heavy metal ions from wastewater using functionalized graphene oxide. This article also describes the mechanism that controls the adsorption of heavy metals onto graphene oxide's surface.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1W. Liu, D. Hao, R. Xu, Agric. Water Manag. 2025, 307, 109256. DOI: https://doi.org/10.1016/j.agwat.2024.109256
- 2A. Balkrishna, S. Ghosh, I. Kaushik, V. Arya, D. Joshi, D. Semwal, A. Saxena, S. Singh, Environ. Sci. Pollut. Res. 2025, 8, 1–35. DOI: https://doi.org/10.1007/s11356-024-35706-4
10.1007/s11356?024?35706?4 Google Scholar
- 3T. E. Oladimeji, M. Oyedemi, M. E. Emetere, O. Agboola, J. B. Adeoye, O. A. Odunlami, Heliyone 2024, 10 (23), 40370. DOI: https://doi.org/10.1016/j.heliyon.2024.e40370
10.1016/j.heliyon.2024.e40370 Google Scholar
- 4A. Nadakuditi, V. Reddy-Vangala, Aibi Rev. Investig. Adm. Ing. 2024, 12 (1), 29–37. DOI: https://doi.org/10.15649/2346030X.3324
10.15649/2346030X.3671 Google Scholar
- 5R. Nithyanandam, R. Rajendran, R. Rajesh, M. J. Orvy, Curr. Nanosci. 2025, 21 (1), 52–81. DOI: https://doi.org/10.2174/0115734137278018231127062510
- 6M. Udhayakumar, S. Udhayakumar, S. B. Pitchaimuthu, S. Alagarsamy, K. Thirumalaisamy, M. Azeem, R. Govindarajan, K. Damodharan, A. D. Madhubala Parameswaran, P. G. Arockiam Jeyasundar, Water Air Soil Pollut. 2025, 236 (1), 53. DOI: https://doi.org/10.1007/s11270-024-07667-4
- 7M. Sharma, S. Sharma, Paavan, M. Gupta, S. Goyal, D. Talukder, M. S Akhtar, R. Kumar, A. Umar, A. A. M. Alkhanjaf, S. Baskoutas, J. Environ. Health Sci. Eng. 2024, 22 (1), 13–30. DOI: https://doi.org/10.1007/s40201-023-00887-6
- 8A. Singh, I. Kostova, Inorg. Chim. Acta 2024, 16, 122068. DOI: https://doi.org/10.1016/j.ica.2024.122068
10.1016/j.ica.2024.122068 Google Scholar
- 9P. Sharma, S. Sharma, S. K. Sharma, A. Jain, K. Shrivastava, Chem. Eng. Res. Des. 2024, 206, 428–439. DOI: https://doi.org/10.1016/j.cherd.2024.04.055
- 10P. Sharma, S. Sharma, S. K. Sharma, S. Yifei, F. Guo, T. Ichikawa, A. Jain, K. Shrivastava, RSC Adv. 2024, 14 (40), 29201–14. DOI: https://doi.org/10.1039/D4RA05442C
- 11S. Sharma, A. Singh, Curr. Org. Chem. 2022, 26 (11), 1112–1118. DOI: https://doi.org/10.2174/1385272826666220621141128
- 12S. Sharma, A. S. Solanki, S. K. Sharma, Corros. Rev. 2024, 42 (2), 185–201. DOI: https://doi.org/10.1515/corrrev-2023-0053
- 13B. S. Rathi, P. S. Kumar, D. V. Vo, Sci. Total Environ. 2021, 797, 149134. DOI: https://doi.org/10.1016/j.scitotenv.2021.149134
- 14G. D. Gawande, Y. D. Nahata, P. V. Chavan, Chem. Pap.2025, 22, 1–1. DOI: https://doi.org/10.1007/s11696-025-03895-y
10.1007/s11696?025?03895?y Google Scholar
- 15M. Sharma, S. Sharma, M. S. Akhtar, R. Kumar, A. Umar, A. A. Alkhanjaf, S. Baskoutas, Int. J. Environ. Sci. Technol. 2024, 21 (7), 6133–6166. DOI: https://doi.org/10.1007/s13762-023-05438-y
- 16S. Sharma, A. S. Solanki, A. Thakur, A. Sharma, A. Kumar, S. K. Sharma, Corros. Rev. 2024, 42 (6), 727–742. DOI: https://doi.org/10.1515/corrrev-2024-0018
- 17S. Sharma, Y. K. Paridwal, S. Sharma, A. Sharma, S. K. Sharma, Asia-Pac. J. Chem. Eng. 2023, 18 (5), e2959. DOI: https://doi.org/10.1002/apj.2959
- 18A. Rathore, S. Sharma, A. Sharma, S. K. Sharma, J. Dispers. Sci.Tech. 2024, 45 (6), 1107–1119. DOI: https://doi.org/10.1080/01932691.2023.2197996
- 19S. Sharma, S. Gurjar, S. Ratnani, S. K. Sharma, in Surface Modified Carbon Nanotubes Volume 1: Fundamentals, Synthesis and Recent Trends (Eds: J. Aslam, C. M. Hussain, R. Aslam), American Chemical Society, Washington, DC 2022. DOI: https://doi.org/10.1021/bk-2022-1424.ch003
- 20S. Gurjar, S. Ratnani, S. K. Sharma, S. Sharma, Ionic Liquids: Eco-Friendly Substitutes for Surface and Interface Applications (Eds: C. Verma), Bentham Science Publishers, Singapore 2023. DOI: https://doi.org/10.2174/97898151362341230101
- 21S. Sharma, A. Sharma, S. K. Sharma, Adsorption Through Advanced Nanoscale Materials (Eds: C. Verma, J. Aslam, E. Khan), Elsevier, Amsterdam, Netherlands 2023. DOI: https://doi.org/10.1016/B978-0-443-18456-7.00023-7
10.1016/B978-0-443-18456-7.00023-7 Google Scholar
- 22S. Sharma, A. Sharma, S. K. Sharma, A. Thakur, Encapsulated Corrosion Inhibitors for Eco-Benign Smart Coatings (Eds: A. Kumar, A. Thakur), CRC Press, Boca Raton 2024.
- 23S. Sharma, A. Rathore, A. Thakur, S. Gurjar, A. Sharma, A. Kumar, S. K. Sharma, Results Surf. Interfaces. 2024, 17, 100295. DOI: https://doi.org/10.1016/j.rsurfi.2024.100295
- 24S. Sharma, A. Jain, S. Saxena, J. Korean Chem. Soc.2012, 56 (4), 440–447. DOI: https://doi.org/10.5012/jkcs.2012.56.4.440
- 25S. Sharma, A. Jain, S. Saxena, Phosphorus, Sulfur, Silicon 2009, 184 (7), 1676–1688. DOI: https://doi.org/10.1080/10426500802176598
- 26K. Chawla, Pooja, S. Sharma, N. Lal, B. S. Rathore, C. Lal, Macromol. Symp. 2024, 413, 2400179. DOI: https://doi.org/10.1002/masy.202400179
- 27R. F. Abbas, M. J. M. Hassan, A. M. Rheima, IJAP 2024, 20 (2A), 317–320. DOI: ijap-iq.com/index.php/ijap/article/view/96
- 28A. A. Yakout, M. A. Shaker, K. Z. Elwakeel, W. Alshitari, J. Dispers. Sci.Tech. 2019, 40 (5), 707–715. DOI: https://doi.org/10.1080/01932691.2018.1477604
- 29K. Z. Elwakeel, M. H. Aly, M. A. El-Howety, E. El-Fadaly, A. Al-Said, J. Polym. Environ. 2018, 26, 3590–3602. DOI: https://doi.org/10.1007/s10924-018-1243-2
- 30K. Z. Elwakeel, G. O. El-Sayed, S. M. Abo El-Nassr, Desalin. Water Treat. 2015, 55 (2), 471–483. DOI: https://doi.org/10.1080/19443994.2014.919606
- 31H. M. Alghamdi, A. M. Elgarahy, M. S. Zoromba, K. Z. Elwakeel, Colloids Surf. A: Physicochem. Eng. Asp. 2024, 12, 134438. DOI: https://doi.org/10.1016/j.colsurfa.2024.134438].
10.1016/j.colsurfa.2024.134438 Google Scholar
- 32B. C. Brodie, Philos. Trans. R. Soc. 1859, 149, 249–259. DOI: https://doi.org/10.1098/rstl.1859.0013
10.1098/rstl.1859.0013 Google Scholar
- 33L. Staudenmaier, Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.
- 34S. William, J. R. E. O. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339. DOI: https://doi.org/10.1021/ja01539a017
- 35L. Sun, B. Fugetsu, Mater. Lett. 2013, 109, 207–210. DOI: https://doi.org/10.1016/j.matlet.2013.07.072
- 36S. Peng, X. Fan, S. Li, J. Zhang, J. Chil. Chem. Soc. 2013, 58 (4), 2213–2217. DOI: https://doi.org/10.4067/S0717-97072013000400067
- 37S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, C. Dotzer, M. Röckert, J. Xiao, C. Papp, O. Lytken, H.-P. Steinrück, P. Müller, A. Hirsch, Adv. Mater. 2013, 25, 3583–3587. DOI: https://doi.org/10.1002/adma.201300155
- 38J. Chen, B. Yao, C. Li, G. Shi, Carbon 2013, 64, 225–229. DOI: https://doi.org/10.1016/j.carbon.2013.07.055
- 39J. Chen, Y. Li, L. Huang, C. Li, G. Shi, Carbon 2015, 81, 826–834. DOI: https://doi.org/10.1016/j.carbon.2014.10.033
- 40V. Panwar, A. Chattree, K. Pal, Phys. E 2015, 73, 235–241. DOI: https://doi.org/10.1016/j.physe.2015.06.006
- 41L. Peng, Z. Xu, Z. Liu, Y. Wei, H. Sun, Z. Li, X. Zhao, C. Gao, Nat. Commun. 2015, 6, 5716. DOI: https://doi.org/10.1038/ncomms6716
- 42J. Sun, N. Yang, Z. Sun, M. Zeng, L. Fu, C. Hu, S. Hu, ACS Appl. Mater. Interfaces 2015, 7, 21356–21363. DOI: https://doi.org/10.1021/acsami.5b06008
- 43M. Rosillo-Lopez, C. G. Salzmann, Carbon 2016, 106, 56–63. DOI: https://doi.org/10.1016/j.carbon.2016.05.022
- 44C. Yu, C. F. Wang, S. Chen, Sci. Rep. 2016, 6, 17071. DOI: https://doi.org/10.1038/srep17071
- 45A. M. Dimiev, G. Ceriotti, A. Metzger, N. D. Kim, J. M. Tour, ACS Nano 2016, 10, 274–279. DOI: https://doi.org/10.1021/acsnano.5b06840
- 46T. F. Emiru, D. W. Ayele, Egypt. J. Basic Appl. Sci. 2017, 4, 74–79. DOI: https://doi.org/10.1016/j.ejbas.2016.11.002
10.1016/j.ejbas.2016.11.002 Google Scholar
- 47N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon, Procedia Eng. 2017, 184, 469–477. DOI: https://doi.org/10.1016/j.proeng.2017.04.118
- 48S. N. Alam, N. Sharma, L. Kumar, Graphene 2017, 6, 1–18. DOI: https://doi.org/10.4236/graphene.2017.61001
- 49S. Pei, Q. Wei, K. Huang, H. M. Cheng, W. Ren, Nat. Commun. 2018, 9, 145. DOI: https://doi.org/10.1038/s41467-017-02479-z
- 50P. Ranjan, S. Agrawal, A. Sinha, T. R. Rao, J. Balakrishnan, A. D. Thakur, Sci. Rep. 2018, 8, 12007. DOI: https://doi.org/10.1038/s41598-018-30613-4
- 51G. Santamaría-Juárez, E. Gómez-Barojas, E. Quiroga-González, E. Sánchez-Mora, M. Quintana-Ruiz, J. D. Santamaría-Juárez, Mater. Res. Express 2020, 6, 125631. DOI: https://doi.org/10.1088/2053-1591/ab4cbf
- 52M. C. Costa, V. S. Marangoni, P. R. Ng, H. T. Nguyen, A. Carvalho, A. H. Castro Neto, Nanomater. 2021, 11, 551. DOI: https://doi.org/10.3390/nano11020551
- 53X. Chen, Z. Qu, Z. Liu, G. Ren, ACS Omega 2022, 7, 23503–23510. DOI: https://doi.org/10.1021/acsomega.2c01963
- 54W. N. Jannah, S. Sunaryono, N. Mufti, AIP Conf. Proc., AIP Publishing, Indonesia, 2023. DOI: https://doi.org/10.1063/5.0138549
10.1063/5.0138549 Google Scholar
- 55N. A. Guliyeva, R. G. Abaszade, E. A. Khanmammadova, E. M. Azizov, J. Optoelectron. Biomed. Mater. 2023, 1, 23–30. DOI: https://doi.org/10.15251/JOBM.2023.151.23
10.15251/JOBM.2023.151.23 Google Scholar
- 56T. J. M. Fraga, M. A. da Motta Sobrinho, M. N. Carvalho, M. G. Ghislandi, Nano Express 2020, 1, 022002. DOI: https://doi.org/10.1088/2632-959X/abb921
- 57Z. Xu, S. Wang, Y. Li, M. Wang, P. Shi, X. Huang, ACS Appl. Mater. Interfaces 2014, 6 (19), 17268–76. DOI: https://doi.org/10.1021/am505308f
- 58C. Sainz-Urruela, S. Vera-López, M. Paz San Andrés, A M. Díez-Pascual, J. Mol. Liq. 2022, 357, 119104. DOI: https://doi.org/10.1016/j.molliq.2022.119104
- 59J. Narayan, K. Bezborah, RSC Adv. 2024, 14 (19), 13413–13444. DOI: https://doi.org/10.1039/D3RA07072G
- 60I. Ali, A. A. Basheer, X. Y. Mbianda, A. Burakov, E. Galunin, I. Burakova, E. Mkrtchyan, A. Tkachev, V. Grachev, Environ. Int. 2019, 127, 160–180. DOI: https://doi.org/10.1016/j.envint.2019.03.029
- 61A. M. Khalil, F. A. Memon, T. A. Tabish, D. Salmon, S. Zhang, D. Butler, J. Chem. Eng. 2020, 398, 125440. DOI: https://doi.org/10.1016/j.cej.2020.125440
- 62N. A. Qasem, R. H. Mohammed, D. U. Lawal, Npj Clean Water 2021, 4, 36. DOI: https://doi.org/10.1038/s41545-021-00127-0
- 63A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 2019, 1, 31–47. DOI: https://doi.org/10.1016/j.nanoms.2019.02.004
10.1016/j.nanoms.2019.02.004 Google Scholar
- 64A. Abu-Nada, G. McKay, A. Abdala, Nanomater 2020, 10, 595. DOI: https://doi.org/10.3390/nano10030595
- 65S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, J. Nanostructure Chem. 2018, 8, 123–137. DOI: https://doi.org/10.1007/s40097-018-0265-6
- 66C. L. Weaver, J. M. LaRosa, X. Luo, X. T. Cui, ACS Nano 2014, 8, 1834–1843. DOI: https://doi.org/10.1021/nn406223e
- 67E. L. Albert, M. B. Sajiman, C. A. Che Abdullah, Appl. Nanosci. 2019, 9, 43–48. DOI: https://doi.org/10.1007/s13204-018-0927-1
- 68S. K. Tiwari, S. Sahoo, N. Wang, A. Huczko, J. Sci.: Adv. Mater. Devices. 2020, 5, 10–29. DOI: https://doi.org/10.1016/j.jsamd.2020.01.006
- 69X. Ji, Y. Xu, W. Zhang, L. Cui, J. Liu, Compos Part A 2016, 87, 29–45. DOI: https://doi.org/10.1016/j.compositesa.2016.04.011
- 70G. Sheng, Y. Li, X. Yang, X. Ren, S. Yang, J. Hu, X. Wang, RSC Adv. 2012, 2, 12400–12407. DOI: https://doi.org/10.1039/C2RA21623J
- 71G. Z. Kyzas, N. A. Travlou, O. Kalogirou, E. A. Deliyanni, Materials 2013, 6, 1360–1376. DOI: https://doi.org/10.3390/ma6041360
- 72M. Namvari, H. Namazi, Polym. Int. 2014, 63, 1881–1888. DOI: https://doi.org/10.1002/pi.4769
- 73Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, X. Chen, G. Zeng, Y. Wu, Water Res. 2014, 67, 330–344. DOI: https://doi.org/10.1016/j.watres.2014.09.026
- 74H. Guo, T. Jiao, Q. Zhang, W. Guo, Q. Peng, X. Yan, Nanoscale Res. Lett. 2015, 10, 1–10. DOI: https://doi.org/10.1186/s11671-015-0931-2
- 75Y. Guo, J. Deng, J. Zhu, X. Zhou, R. Bai, RSC Adv. 2016, 6, 82523–82536. DOI: https://doi.org/10.1039/C6RA14651A
- 76H. Ge, C. Wang, S. Liu, Z. Huang, Bioresour. Technol. 2016, 221, 419–429. DOI: https://doi.org/10.1016/j.biortech.2016.09.060
- 77Y. Liu, H. Huang, D. Gan, L. Guo, M. Liu, J. Chen, F. Deng, N. Zhou, X. Zhang, Y. Wei, Ceram. Int. 2018, 44, 18571–18577. DOI: https://doi.org/10.1016/j.ceramint.2018.07.081
- 78V. Ganesan, C. Louis, S. P. Damodaran, J. Environ. Chem. Eng. 2018, 6, 2176–2190. DOI: https://doi.org/10.1016/j.jece.2018.03.026
- 79A. K. Sarkar, J. K. Bediako, J. W. Choi, Y. S. Yun, NPG Asia Mater 2019, 11, 4. DOI: https://doi.org/10.1038/s41427-018-0104-8
- 80K. S. Obayomi, S. Y. Lau, M. K. Danquah, J. Zhang, T. Chiong, L. Meunier, S. R. Gray, M. M. Rahman, Desalination 2023, 564, 116749. DOI: https://doi.org/10.1016/j.desal.2023.116749
- 81J. Xie, Symmetry 2023, 15, 1678. DOI: https://doi.org/10.3390/sym15091678
- 82M. Verma, I. Lee, J. Oh, V. Kumar, H. Kim, Chemosphere 2022, 287, 132385. DOI: https://doi.org/10.1016/j.chemosphere.2021.132385
- 83J. Sun, Q. Liang, Q. Han, X. Zhang, M. Ding, Talanta 2015, 132, 557–563. DOI: https://doi.org/10.1016/j.talanta.2014.09.043
- 84J. Dai, T. Huang, S. Q. Tian, Y. J. Xiao, J. H. Yang, N. Zhang, Y. Wang, Z. W. Zhou, Mater. Des. 2016, 107, 187–197. DOI: https://doi.org/10.1016/j.matdes.2016.06.039
- 85W. Xiao, B. Yan, H. Zeng, Q. Liu, Carbon 2016, 105, 655–664. DOI: https://doi.org/10.1016/j.carbon.2016.04.057
- 86M. S. Raghu, K. Yogesh Kumar, M. K. Prashanth, B. P. Prasanna, R. Vinuth, C. B. Pradeep Kumar, J. Water Process Eng. 2017, 17, 22–31. DOI: https://doi.org/10.1016/j.jwpe.2017.03.001
- 87J. Liang, B. He, P. Li, J. Yu, X. Zhao, H. Wu, J. Li, Y. Sun, Q. Fan, Chem. Eng. J. 2019, 358, 552–563. DOI: https://doi.org/10.1016/j.cej.2018.09.213
- 88M. U. Farooq, M. I. Jalees, J. Water Process Eng. 2020, 33, 101044. DOI: https://doi.org/10.1016/j.jwpe.2019.101044
- 89L. P. Lingamdinne, J. R. Koduru, Y. Y. Chang, M. Naushad, J. K. Yang, Polymers 2021, 13, 3835. DOI: https://doi.org/10.3390/polym13213835
- 90Y. Cheng, S. Yang, T. E., Inorg. Chem. Commun. 2021, 128, 108603. DOI: https://doi.org/10.1016/j.inoche.2021.108603
- 91M. Zarenezhad, M. Zarei, M. Ebratkhahan, M. Hosseinzadeh, Environ. Technol. Innov. 2021, 22, 101384. DOI: https://doi.org/10.1016/j.eti.2021.101384
- 92S. Farooq, H. Aziz, S. Ali, G. Murtaza, M. Rizwan, M. H. Saleem, S. Mahboob, K. A. Al-Ghanim, M. N. Riaz, B. Murtaza, Int. J. Environ. Res. Public Health 2022, 19, 10610. DOI: https://doi.org/10.3390/ijerph191710610
- 93E. F. D. Januário, Y. J. Fachina, G. Wernke, G. M. M. Demiti, L. B. Beltran, R. Bergamasco, A. M. S. Vieira, Chemosphere 2022, 289, 133213. DOI: https://doi.org/10.1016/j.chemosphere.2021.133213
- 94M. S. Islam, H. Roy, T. Ahmed, S. H. Firoz, S. X. Chang, Chemosphere 2023, 340, 139827. DOI: https://doi.org/10.1016/j.chemosphere.2023.139827
- 95B. An, Y. Wang, Z. Guo, F. Chu, Y. Li, X. Liu, B. Liu, H. Liu, Z. Liang, Y. Zuo, Mater. Today Commun. 2025, 42, 111157. DOI: https://doi.org/10.1016/j.mtcomm.2024.111157
- 96A. Zamani, A. Tadjarodi, J. Inorg. Organomet. Polym. Mater. 2025, 17, 1–45. DOI: https://doi.org/10.1007/s10904-024-03575-6
- 97E. F. Fiorentini, A. Bonilla-Petriciolet, L. B. Escudero, Environ. Sci. Pollut. Res. 2025, 32 (1), 89–101. DOI: https://doi.org/10.1007/s11356-024-35733-1
- 98A. Chen, M. Tan, N. Qu, Y. Liu, T. Han, J. Zhu, X. Zhang, Mater. Today Commun. 2025, 7, 111529. DOI: https://doi.org/10.1016/j.mtcomm.2025.111529
10.1016/j.mtcomm.2025.111529 Google Scholar
- 99N. A. Khan, Z. Jahan, N. Iqbal, M. B. Niazi, R. Mehek, Waste Manag 2025, 191, 274–283. DOI: https://doi.org/10.1016/j.wasman.2024.11.015
- 100M. Ayala-Claveria, C. Carlesi, J. Puig, G. Olguin, Chem. Eng. J. Adv. 2024, 19, 100684. DOI: https://doi.org/10.1016/j.ceja.2024.100684
10.1016/j.ceja.2024.100684 Google Scholar
- 101G. Li, R. Du, Z. Cao, C. Li, J. Xue, X. Ma, S. Wang, C. 2024, 10 (3), 78. DOI: https://doi.org/10.3390/c10030078