Energy-Efficient Styrene Production by Incorporating Ionic Liquid-Based Separation Technology
Assoc. Prof. Yang Lei
School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, Hubei, 430081 China
Search for more papers by this authorJiaqi Yan
School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, Hubei, 430081 China
Search for more papers by this authorYuming Chen
Technical Department, Sinopec Energy Management Co. Ltd., 67A Ande Road, Beijing, 100120 China
Search for more papers by this authorAssoc. Prof. Xinyan Liu
School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, Hubei, 430081 China
Search for more papers by this authorAssoc. Prof. Xiaodong Liang
Department of Chemical and Biochemical Engineering, Technical University of Denmark, Anker Engelunds Vej 1, Kongens Lyngby, 2800 Denmark
Search for more papers by this authorProf. Georgios M. Kontogeorgis
Department of Chemical and Biochemical Engineering, Technical University of Denmark, Anker Engelunds Vej 1, Kongens Lyngby, 2800 Denmark
Search for more papers by this authorCorresponding Author
Yuqiu Chen
Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware, 19716 USA
College of Chemical Engineering and Environment, China University of Petroleum, No.18, Fuxue Road, Beijing, 102249 China
E-mail: [email protected]
Search for more papers by this authorAssoc. Prof. Yang Lei
School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, Hubei, 430081 China
Search for more papers by this authorJiaqi Yan
School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, Hubei, 430081 China
Search for more papers by this authorYuming Chen
Technical Department, Sinopec Energy Management Co. Ltd., 67A Ande Road, Beijing, 100120 China
Search for more papers by this authorAssoc. Prof. Xinyan Liu
School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, Hubei, 430081 China
Search for more papers by this authorAssoc. Prof. Xiaodong Liang
Department of Chemical and Biochemical Engineering, Technical University of Denmark, Anker Engelunds Vej 1, Kongens Lyngby, 2800 Denmark
Search for more papers by this authorProf. Georgios M. Kontogeorgis
Department of Chemical and Biochemical Engineering, Technical University of Denmark, Anker Engelunds Vej 1, Kongens Lyngby, 2800 Denmark
Search for more papers by this authorCorresponding Author
Yuqiu Chen
Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware, 19716 USA
College of Chemical Engineering and Environment, China University of Petroleum, No.18, Fuxue Road, Beijing, 102249 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The separation of ethylbenzene/styrene represents a pivotal step in the styrene production process, which is associated with significant energy consumption, substantial costs, and considerable environmental impact. In this study, ionic liquids (ILs) were incorporated into the separation process, thereby enabling energy-efficient styrene production through the use of extractive distillation. By solving a formulated mixed-integer nonlinear programming (MINLP) problem based on computer-aided ionic liquid design (CAILD), 1-methylpyridinium trifluoromethanesulfonate ([mPy][CF3SO3]) and 1-ethylpyridinium tetrafluoroborate ([C2Py][BF4]) were identified as optimal IL candidates for this application. Comprehensive process simulations and optimizations were conducted, focusing on energy consumption, environmental impact, and economic performance. In comparison to the conventional process, the [mPy][CF3SO3]-based and [C2Py][BF4]-based processes achieved reductions in energy consumption by 44.2 % and 59.0 %, respectively. Furthermore, there was a notable reduction in carbon emissions, amounting to 28.9 % and 25.4 %. However, processes utilizing [mPy][CF3SO3] showed an increase in total annual cost (TAC) by 11.8 %. Meanwhile, processes based on [C2Py][BF4] demonstrated a diminution in TAC by 3.7 %. Nonetheless, Monte Carlo simulations indicate that IL-based processes exhibit slightly better resilience to economic uncertainties compared to conventional processes. Overall, the significant energy and environmental benefits of IL-based processes highlight their potential in styrene production, especially with the implementation of active policies related to energy use and carbon emissions (e.g., carbon taxes).
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ceat70008-sup-0001-SuppMat.docx378.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. C. Gentry, S. Kumar, R. Wright-Wytcherley, Hydrocarbon Process. 2004, 83 (6), 62–66.
- 2G. A. Randall, US Patent 3 084 108, 1963.
- 3M. Van Tassell, US Patent 3 398 063, 1968.
- 4V. A. Welch, US Patent 6 171 449, 2001.
- 5S. Jarczewski, M. Drozdek, P. Michorczyk, C. Cuadrado-Collados, J. Gandara-Loe, J. Silvestre-Albero, L. Lityńska-Dobrzyńska, P. Kuśtrowski, Appl. Surf. Sci. 2020, 504, 144336–144347. DOI: https://doi.org/10.1016/j.apsusc.2019.144336
- 6W. Liu, B. Chen, X. Duan, K. H. Wu, W. Qi, X. Guo, B. Zhang, D. Su, ACS Catal. 2017, 7 (9), 5820–5827. DOI: https://doi.org/10.1021/acscatal.7b01905
- 7J. Madhavi, M. Suresh, G. V. Ramesh Babu, P. S. Sai Prasad, B. David Raju, K. S. Rama Rao, J. CO₂ Util. 2014, 8, 21–26. DOI: https://doi.org/10.1016/j.jcou.2014.09.002
- 8N. S. Abo-Ghander, F. Logist, J. R. Grace, J. F. M. Van Impe, S. S. E. H. Elnashaie, C. J. Lim, Comput. Chem. Eng. 2012, 38, 11–23. DOI: https://doi.org/10.1016/j.compchemeng.2011.10.007
- 9N. Jiang, A. Burri, S. E. Park, Chin. J. Catal. 2016, 37 (1), 3–15. DOI: https://doi.org/10.1016/S1872-2067(15)60901-9
- 10J. Sheng, B. Yan, B. He, W.-D. Lu, W.-C. Li, A.-H Lu, Catal. Sci. Technol. 2020, 10 (6), 1809–1815. DOI: https://doi.org/10.1039/C9CY02342A
- 11S. Chen, Z. Xu, D. Tan, D. Pan, X. Cui, Y. Qiao, R. Li, Appl. Organomet. Chem. 2020, 34 (2), e5396–5406. DOI: https://doi.org/10.1002/aoc.5396
- 12D. Pan, Yu Ru, T. Liu, Y. Wang, F. Yu, S. Chen, X. Yan, B. Fan, R. Li, Chem. Eng. Sci. 2022, 250, 117388–117401. DOI: https://doi.org/10.1016/J.CES.2021.117388
- 13M. Khatamian, M. S. Oskoui, E. Sadeghi, J. Phys. Chem. C 2017, 121 (12), 6650–6661. DOI: https://doi.org/10.1021/acs.jpcc.6b12376
- 14X. Sun, Z. Liu, Y. Li, K. Tang, J. Wang, Z. Sui, X. Xu, J. Environ. Chem. Eng. 2023, 11 (3), 109907–109917. DOI: https://doi.org/10.1016/J.JECE.2023.109907
- 15S. Zhang, W. Li, X. Li, J. Fuel Chem. Technol. 2015, 43 (4), 437–441.
10.1016/S1872-5813(15)30012-8 Google Scholar
- 16B. M. Reddy, H. Jin, D. S. Han, S. E. Park, Catal. Lett. 2008, 124, 357–363. DOI: https://doi.org/10.1007/s10562-008-9475-8
- 17X. Li, C. Cui, H. Li, X. Gao, Sep. Purif. Technol. 2019, 228, 115760–115770. DOI: https://doi.org/10.1016/j.seppur.2019.115760
- 18A. Vega, F. Díez, R. Esteban, J. Coca, Ind. Eng. Chem. Res. 1997, 36 (3), 803–807. DOI: https://doi.org/10.1021/ie960426f
- 19Z. Lei, C. Dai, B. Chen, Z. Ding, Special distillation processes, Elsevier. 2021.
- 20B. Chen, Z. Lei, Q. Li, C. Li, AIChE J. 2005, 51 (12), 3114–3121. DOI: https://doi.org/10.1002/aic.10562
- 21G. W Meindersma, A. R. Hansmeier, A. B. De Haan, Ind. Eng. Chem. Res. 2010, 49 (16), 7530–7540. DOI: https://doi.org/10.1021/ie100703p
- 22M. T. G. Jongmans, E. Hermens, M. Raijmakers, J. I. W. Maassen, B. Schuur, A. B. De Haan, Chem. Eng. Res. Des. 2012, 90 (12), 2086–2100. DOI: https://doi.org/10.1016/j.cherd.2012.05.019
- 23M. T. G. Jongmans, B. Schuur, A. B. De Haan, Ind. Eng. Chem. Res. 2011, 50 (18), 10800–10810. DOI: https://doi.org/10.1021/ie2011627
- 24M. Karpińska, U. Domańska, M. Wlazło, J. Chem. Thermodyn. 2016, 103, 423–431. DOI: https://doi.org/10.1016/j.jct.2016.09.003
- 25M. Karpińska, M. Wlazło, U. Domańska, Chem. Eng. Res. Des. 2017, 128, 214–220. DOI: https://doi.org/10.1016/j.cherd.2017.10.016
- 26Q. Wang, J. Y. Chen, M. Pan, C. He, C. C. He, B. J. Zhang, Q. L. Chen, Chem. Eng. Process. 2018, 128, 80–95. DOI: https://doi.org/10.1016/j.cep.2018.04.011
- 27Y. Lei, Z. Yu, Z. Wei, X. Liu, H. Luo, Y. Chen, X. Liang, G. M. Kontogeorgis Fuel 2022, 326. DOI: https://doi.org/10.1016/j.fuel.2022.124930
- 28Y. Hu, F. Li, S. Wei, S. Jin, W. Shen, Sep. Purif. Technol. 2020, 242, 116829–116829. DOI: https://doi.org/10.1016/j.seppur.2020.116829
- 29F. Guella, H. Benyounes, W. Shen, Chem. Eng. Process. 2022, 173. DOI: https://doi.org/10.1016/J.CEP.2022.108815
10.1016/J.CEP.2022.108815 Google Scholar
- 30Y. Lei, Y. Zhou, Z. Wei, Y. Chen, F. Guo, W. Yan, Ind. Eng. Chem. Res. 2021, 60 (9), 3605–3616. DOI: https://doi.org/10.1021/ACS.IECR.0C05183
- 31Y. Lei, Z. Yu, Z. Wei, X. Liu, H. Yu, X. Liang, G. M. Kontogeorgis, Y. Chen, Sep. Purif. Technol. 2023, 308, 122827–122843. DOI: https://doi.org/10.1016/J.SEPPUR.2022.122827
- 32W. Li, Bo Xu, Z. Lei, C. Dai, Chem. Eng. Process. 2018, 126, 81–89. DOI: https://doi.org/10.1016/j.cep.2018.02.016
- 33R. Vijayaraghavan, D. R. Macfarlane, ACS Sustain Chem. Eng. 2014, 2 (7), 1724–1728. DOI: https://doi.org/10.1021/sc5002066
- 34D. Cai, Y. Xie, L. Li, J. Ren, X. Lin, T. Qiu, Energy Convers. Manage. 2018, 166, 318–327. DOI: https://doi.org/10.1016/j.enconman.2018.04.036
- 35X. Chen, S. Ming, X. Wu, C. Chen, C. Asumana, G. Yu, Sep. Sci. Technol. 2013, 48 (15), 2317–2323. DOI: https://doi.org/10.1080/01496395.2013.794836
- 36Z. Lei, C. Dai, J. Zhu, B. Chen, AIChE J. 2014, 60 (9), 3312–3329. DOI: https://doi.org/10.1002/aic.14537
- 37A. L. Revelli, F. Mutelet, J. N. Jaubert, J. Phys. Chem. B 2010, 114 (13), 4600–4608. DOI: https://doi.org/10.1021/jp911978a
- 38U. Domańska, M. Laskowska, A. Marciniak, J. Chem. Eng. Data 2008, 53 (2), 498–502. DOI: https://doi.org/10.1021/je700591h
- 39G. Wytze Meindersma, A. (J.G.) Podt, A. B. De Haan, Fuel Process. Technol. 2005, 87 (1), 59–70. DOI: https://doi.org/10.1016/j.fuproc.2005.06.002
- 40U. Domańska, M. Karpińska, M. Wlazło, J. Chem. Thermodyn. 2018, 121, 112–120. DOI: https://doi.org/10.1016/j.jct.2018.02.014
- 41M. T. G. Jongmans, J. Trampé, B. Schuur, A. B. De Haan, Chem. Eng. Process. 2013, 70, 148–161. DOI: https://doi.org/10.1016/j.cep.2013.04.007
- 42M. Karpińska, M. Wlazło, U. Domańska, J. Solution Chem. 2018, 47, 1578–1596. DOI: https://doi.org/10.1007/s10953-018-0755-7
- 43M. Karpińska, M. Wlazło, D. Ramjugernath, P. Naidoo, U. Domańska, RSC Adv. 2017, 7 (12), 7092–7107. DOI: https://doi.org/10.1039/c6ra25208g
- 44M. Karpińska, M. Wlazło, M. Zawadzki, U. Domańska, J. Chem. Thermodyn. 2018, 118, 244–254. DOI: https://doi.org/10.1016/j.jct.2017.11.017
- 45M. Królikowski, M. Królikowska, J. Chem. Thermodyn. 2014, 68, 138–144. DOI: https://doi.org/10.1016/j.jct.2013.09.007
- 46U. Domańska, M. Karpińska, M. Zawadzki, J. Chem. Thermodyn. 2015, 89, 127–133. DOI: https://doi.org/10.1016/j.jct.2015.05.014
- 47U. Domańska, E. V. Lukoshko, J. Chem. Thermodyn. 2014, 68, 53–59. DOI: https://doi.org/10.1016/j.jct.2013.08.030
- 48U. Domańska, K. Paduszyński, J. Chem. Thermodyn. 2010, 42 (6), 707–711. DOI: https://doi.org/10.1016/j.jct.2010.01.004
- 49M. Wlazło, A. Marciniak, M. Zawadzki, B. Dudkiewicz, J. Chem. Thermodyn. 2015, 86, 154–161. DOI: https://doi.org/10.1016/j.jct.2015.02.024
- 50H. Kuramochi, K. Maeda, S. Kato, M. Osako, K. Nakamura, S.-I. Sakai, Fuel 2009, 88 (8), 1472–1477. DOI: https://doi.org/10.1016/j.fuel.2009.01.017
- 51R. Gani, B. Nielsen, A. Fredenslund, AIChE J. 1991, 37 (9), 1318–1332. DOI: https://doi.org/10.1002/aic.690370905
- 52A. T. Karunanithi, A. Mehrkesh, AIChE J. 2013, 59 (12): 4627–4640. DOI: https://doi.org/10.1002/aic.14228
- 53X. Liu, Y. Chen, S. Zeng, X. Zhang, S. Zhang, X. Liang, R. Gani, G. M. Kontogeorgis, AIChE J. 2020, 66 (2), e16794–16808. DOI: https://doi.org/10.1002/aic.16794
- 54Y. Lei, L. Du, X. Liu, H. Yu, X. Liang, G. M. Kontogeorgis, Y. Chen, Chem. Eng. J. 2023, 476, 146424–146441. DOI: https://doi.org/10.1016/J.CEJ.2023.146424
- 55Y. Lei, Z. Guo, L. Du, X. Meng, X. Liu, X. Wu, Y. Chen, Fuel 2024, 357, 130006–130019. DOI: https://doi.org/10.1016/J.FUEL.2023.130006
- 56Z. Song, T. Zhou, Z. Qi, K. Sundmacher, ACS Sustain Chem. Eng. 2017, 5 (4), 3382–3389. DOI: https://doi.org/10.1021/acssuschemeng.7b00024
- 57Y. Chen, R. Gani, G. M. Kontogeorgis, J. M. Woodley, Chem. Eng. Sci. 2019, 203, 402–414. DOI: https://doi.org/10.1016/j.ces.2019.04.005
- 58G. Li, S. Liu, G. Yu, C. Dai, Z. Lei, Sep. Purif. Technol. 2021, 269, 118713–118726. DOI: https://doi.org/10.1016/J.SEPPUR.2021.118713
- 59A. Yang, Y. Su, T. Shi, et al. Front. Chem. Sci. Eng. 2021, 16 (2), 1–13. DOI: https://doi.org/10.1007/S11705-021-2044-Z
- 60H. Chao, Z. Song, H. Cheng, L. Chen, Z. Qi, Sep. Purif. Technol. 2018, 196, 157–165. DOI: https://doi.org/10.1016/j.seppur.2017.06.054
- 61Y. Chen, G. M. Kontogeorgis, J. M. Woodley, Ind. Eng. Chem. Res. 2019, 58 (10), 4277–4292. DOI: https://doi.org/10.1021/acs.iecr.8b05040
- 62J. A. Lazzús, Fluid Phase Equilib. 2012, 313, 1–6. DOI: https://doi.org/10.1016/j.fluid.2011.09.018
- 63Y. Chen, X. Liu, J. M. Woodley, G. M. Kontogeorgis, Ind. Eng. Chem. 2020, 59 (38), 16805–16821. DOI: https://doi.org/10.1021/acs.iecr.0c02769
- 64I. C. Kemp, Pinch analysis and process integration: A user guide on process integration for the efficient use of energy, Elsevier, Amsterdam 2011.
- 65Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, AIChE J. 2013, 59 (4), 1348–1359. DOI: https://doi.org/10.1002/aic.13910
- 66B. C. Roughton, B. Christian, J. White, K. V. Camarda, R. Gani, Comput. Chem. Eng. 2012, 42, 248–262. DOI: https://doi.org/10.1016/j.compchemeng.2012.02.021
- 67Q. Li, N. Hu, S. Zhang, Q. Wu, J. Qi, Sep. Purif. Technol. 2021, 255, 117695–117708. DOI: https://doi.org/10.1016/j.seppur.2020.117695
- 68N. Saxena, N. Mali, S. Satpute, Sādhanā 2017, 42, 119–128. DOI: https://doi.org/10.1007/s12046-016-0580-x
- 69B. Shi, X. X. He, W. Wu, C. L. Hsien, Chem. Eng. Technol. 2019, 42 (5), 1116–1126. DOI: https://doi.org/10.1002/ceat.201800216
- 70H. Zaroni, L. B. Maciel, D. B. Carvalho, E. De. O. Pamplona, Energy 2019, 172, 498–508. DOI: https://doi.org/10.1016/j.energy.2019.01.145
- 71V. Platon, A. Constantinescu, Procedia Econ. Finance 2014, 15, 393–400. DOI: https://doi.org/10.1016/S2212-5671(14)00463-8
10.1016/S2212-5671(14)00463-8 Google Scholar