Nickel Oxide Nanoparticles: A Brief Review of Their Synthesis, Characterization, and Applications
Sakhamudi Sai Narender
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorVadlamuri Venkata Siddhartha Varma
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorChundury Sai Srikar
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorJadhav Ruchitha
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorPericharla Adarsh Varma
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorCorresponding Author
Bulusu Venkata Sesha Praveen
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Correspondence: Bulusu Venkata Sesha Praveen ([email protected]), Department of Chemical Engineering, B V Raju Institute of Technology, Narsapur, Medak, Telangana, 502313, India.Search for more papers by this authorSakhamudi Sai Narender
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorVadlamuri Venkata Siddhartha Varma
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorChundury Sai Srikar
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorJadhav Ruchitha
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorPericharla Adarsh Varma
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Search for more papers by this authorCorresponding Author
Bulusu Venkata Sesha Praveen
B V Raju Institute of Technology, Department of Chemical Engineering, 502313 Narsapur, Medak, Telangana, Telangana, India
Correspondence: Bulusu Venkata Sesha Praveen ([email protected]), Department of Chemical Engineering, B V Raju Institute of Technology, Narsapur, Medak, Telangana, 502313, India.Search for more papers by this authorAbstract
Particles with size in the range of 1–100 nm, considered in any dimension, are called nanoparticles (NPs). Among various nanoparticles, nickel oxide nanoparticles (NNPs) are important because of their physical, chemical, and biological properties. In the past two decades, significant research has been done on the synthesis of NNPs. Their applications range from energy storage to catalysis to antifungal and antibacterial activity. This review provides a brief overview of various methods used for synthesizing NNPs, their properties, and their applications. The synthesis methods are classified into physical synthesis, chemical synthesis, and green synthesis involving plants and microorganisms, especially fungi. Particular focus is given to the types of precursors used for their synthesis, morphology, particle size, and applications.
References
- 1 I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sens. Actuators B Chem. 1999, 57 (1–3), 147–152. DOI: https://doi.org/10.1016/S0925-4005(99)00077-5
- 2 Azens, L. Kullman, G. Vaivars, H. Nordborg, C.G. Granqvist, Solid State Ionics 1998, 113–115 (1–2), 449–456. DOI: https://doi.org/10.1016/S0167-2738(98)00309-9
- 3 R. Kumar, R. K. Singh, R. Savu, P. K. Dubey, P. Kumar, S. A. Moshkalev, RSC Adv. 2016, 6, 26612–26620. DOI: https://doi.org/10.1039/C6RA00426A
- 4 M. A. Nasseri, F. Ahrari, B. Zakerinasab, Appl. Organomet. Chem. 2016, 30, 978–984. DOI: https://doi.org/10.1002/aoc.3530
- 5 M. El-Kemary, N. Nagy, I. El-Mehasseb, Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. DOI: https://doi.org/10.1016/j.mssp.2013.05.018
- 6 M. Boutinguiza, R. Comesaña, F. Lusquiños, A. Riveiro, J. del Val, J. Pou, Appl. Surf. Sci. 2015, 336, 108–111. DOI: https://doi.org/10.1016/j.apsusc.2014.09.193
- 7 V. Piriyawong, V. Thongpool, P. Asanithi, P. Limsuwan, Procedia Eng. 2012, 32, 1107–1112. DOI: https://doi.org/10.1016/j.proeng.2012.02.062
- 8 K. Khashan, G. Sulaiman, F. A. Abdulameer, Pak. J. Pharm. Sci. 2016, 29 (2), 541–546.
- 9 Y. Wang, C. Zhang, S. Bi, G. Luo, Powder Technol. 2010, 202 (1–3), 130–136. DOI: https://doi.org/10.1016/j.powtec.2010.04.027
- 10 K. Supattarasakda, K. Petcharoen, T. Permpool, A. Sirivat, W. Lerdwijitjarud, Powder Technol. 2013, 249, 353–359. DOI: https://doi.org/10.1016/j.powtec.2013.08.042
- 11
M. Nazari, N. Ghasemi, H. Maddah, M. M. Motlagh, J. Nanostruct. Chem.
2014, 4 (2). DOI: https://doi.org/10.1007/s40097-014-0099-9
10.1007/s40097?014?0099?9 Google Scholar
- 12 T. M. Tillotson, A. E. Gash, R. L. Simpson, L. W. Hrubesh, J. H. Satcher, J. F. Poco, J. Non-Cryst. Solids 2001, 285, 338–345. DOI: https://doi.org/10.1016/S0022-3093(01)00477-X
- 13 L. Dimesso, Handbook of Sol-Gel Science and Technology, Springer International Publishing, 2016, 1–22. DOI: https://doi.org/10.1007/978-3-319-19454-7_123-1
- 14 B. V. S. Praveen, B. J. Cho, J. G. Park, S. Ramanathan, Mater. Sci. Semicond. Process. 2015, 33, 161–168. DOI: https://doi.org/10.1016/j.mssp.2015.01.049
- 15 S. H. Lee, N. Kakati, S. H. Jee, J. Maiti, Y. S. Yoon, Mater. Lett. 2011, 65, 3281–3284. DOI: https://doi.org/10.1016/j.matlet.2011.07.025
- 16 L. Wang, X. Zhang, Y. Ma, M. Yang, Y. Qi, Mater. Lett. 2016, 164, 623–626. DOI: https://doi.org/10.1016/j.matlet.2015.11.076
- 17 A. Rita, A. Sivakumar, S. A. M. B. Dhas, J. Supercond. Novel Magn. 2020, 33, 1845–1849. DOI: https://doi.org/10.1007/s10948-020-05435-z
- 18 N. M. Hosny, Polyhedron 2011, 30, 470–476. DOI: https://doi.org/10.1016/j.poly.2010.11.020
- 19 M. James, R. A. Revia, Z. Stephen, M. Zhang, Nanomaterials 2020, 10, 1–19. DOI: https://doi.org/10.3390/nano10112113
- 20 F. Davar, Z. Fereshteh, M. Salavati-Niasari, J. Alloys Compd. 2009, 476, 797–801. DOI: https://doi.org/10.1016/j.jallcom.2008.09.121
- 21 T. Krishnakumar, R. Jayaprakash, N. Pinna, V. N. Singh, B. R. Mehta, A. R. Phani, Mater. Lett. 2009, 63, 242–245. DOI: https://doi.org/10.1016/j.matlet.2008.10.008
- 22 M. Nüchter, B. Ondruschka, W. Bonrath, A. Gum, Green Chem. 2004, 6, 28–141. DOI: https://doi.org/10.1039/b310502d
- 23 D. Mohammadyani, S. A. Hosseini, S. K. Sadrnezhaad, Int. J. Mod. Phys. Conf. Ser. 2012, 5, 270–276. DOI: https://doi.org/10.1142/s2010194512002127
- 24 D. Y. Han, H. Y. Yang, C. B. Shen, X. Zhou, F. H. Wang, Powder Technol. 2004, 147, 113–116. DOI: https://doi.org/10.1016/j.powtec.2004.09.024
- 25 I. W. Lenggoro, Y. Itoh, N. Iida, K. Okuyama, Mater. Res. Bull. 2003, 38, 1819–1827. DOI: https://doi.org/10.1016/j.materresbull.2003.08.005
- 26 A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, X. Zhang, L. J. Kennedy, Surf. Interfaces 2020, 20, 100553. DOI: https://doi.org/10.1016/j.surfin.2020.100553
- 27 A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, L. J. Kennedy, J. Photochem. Photobiol. B 2016, 164, 352–360. DOI: https://doi.org/10.1016/j.jphotobiol.2016.10.003
- 28 M. Saheb, H. A. Hosseini, A. Hashemzadeh, B. Elahi, L. Hasanzadeh, R. K. Oskuee, M. Darroudi, ChemistrySelect 2019, 4, 2416–2420. DOI: https://doi.org/10.1002/slct.201803903
- 29 A. A. Barzinjy, S. M. Hamad, S. Aydın, M. H. Ahmed, F. H. S. Hussain, J. Mater. Sci. Mater. Electron. 2020, 31, 11303–11316. DOI: https://doi.org/10.1007/s10854-020-03679-y
- 30
Z. Molnár, V. Bódai, G. Szakacs, B. Erdélyi, Z. Fogarassy, G. Sáfrán, T. Varga, Z. Kónya, E. Tóth-Szeles, R. Szucs, I. Lagzi, Sci. Rep.
2018, 8. DOI: https://doi.org/10.1038/s41598-018-22112-3
10.1038/s41598?018?22112?3 Google Scholar
- 31
M. R. Salvadori, C. A. O. Nascimento, B. Corrêa, Sci. Rep.
2014, 3. DOI: https://doi.org/10.1038/srep06404
10.1038/srep06404 Google Scholar
- 32 M. R. Salvadori, R. A. Ando, C. A. O. Nascimento, B. Corrêa, PLoS One 2015, 10 (6), e0129799. DOI: https://doi.org/10.1371/journal.pone.0129799
- 33 S. El-Debaiky, A. El-Badry, M. El-Shahawy, Egypt. J. Bot. 2017, 57 (3), 417–428. DOI: https://doi.org/10.21608/ejbo.2017.899.1066
- 34 M. Rafique, I. Sadaf, M. S. Rafique, M. B. Tahir, Artif. Cells, Nanomed., Biotechnol. 2017, 45, 1272–1291. DOI: https://doi.org/10.1080/21691401.2016.1241792
- 35 M. A. Gondal, T. A. Saleh, Q. A. Drmosh, Appl. Surf. Sci. 2012, 258, 6982–6986. DOI: https://doi.org/10.1016/j.apsusc.2012.03.147
- 36
M. Safa, D. Dorranian, A. A. Masoudi, L. F. Matin, Appl. Phys. A: Mater. Sci. Process.
2019, 125. DOI: https://doi.org/10.1007/s00339-019-2986-x
10.1007/s00339?019?2986?x Google Scholar
- 37
A. A. Hadi, J. M. Taha, R. O. Mahdi, K. S. Khashan, AIP Conf. Proc.
2020, 2213. DOI: https://doi.org/10.1063/5.0000115
10.1063/5.0000115 Google Scholar
- 38 R. Ma, D. A. Reddy, T. K. Kim, Bull. Korean Chem. Soc. 2015, 36, 5–6. DOI: https://doi.org/10.1002/bkcs.10040
- 39
Y. Bahari Molla Mahaleh, S. K. Sadrnezhaad, D. Hosseini, J. Nanomater.
2008, 470595. DOI: https://doi.org/10.1155/2008/470595
10.1155/2008/470595 Google Scholar
- 40 S. Saravanakumar, R. Saravanan, S. Sasikumar, Chem. Pap. 2014, 68, 788–797. DOI: https://doi.org/10.2478/s11696-013-0519-1
- 41
R. Goel, R. Jha, C. Ravikant, J. Phys. Chem. Solids
2020, 144. DOI: https://doi.org/10.1016/j.jpcs.2020.109488
10.1016/j.jpcs.2020.109488 Google Scholar
- 42 K. Baranwal, L. M. Dwivedi, Shehala, V. Singh, Int. J. Biol. Macromol. 2018, 120, 2431–2441. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.013
- 43 M. R. Kalaie, A. A. Youzbashi, M. A. Meshkot, F. Hosseini-Nasab, Appl. Nanosci. 2016, 6, 789–795. DOI: https://doi.org/10.1007/s13204-015-0498-3
- 44 M. Derakhshi, T. Jamali, M. Elyasi, M. Bijad, R. Sadeghi, A. Kamali, K. Niazazari, M. R. Shahmiri, A. Bahari, S. Mokhtari, Int. J. Electrochem. Sci. 2013, 8, 8252–8263.
- 45 P. A. Sheena, K. P. Priyanka, N. A. Sabu, S. Ganesh, T. Varghese, Bull. Mater. Sci. 2015, 38 (4), 825–830. DOI: https://doi.org/10.1007/s12034-015-0953-5
- 46
D. Paul, S. Neogi, Mater. Res. Express
2019, 6. DOI: https://doi.org/10.1088/2053-1591/ab003c
10.1088/2053?1591/ab003c Google Scholar
- 47 A. S. Danial, M. M. Saleh, S. A. Salih, M. I. Awad, J. Power Sources 2015, 293, 101–108. DOI: https://doi.org/10.1016/j.jpowsour.2015.05.024
- 48 M. M. Ba-Abbad, P. V. Chai, M. S. Takriff, A. Benamor, A. W. Mohammad, Mater. Des. 2015, 86, 948–956. DOI: https://doi.org/10.1016/j.matdes.2015.07.176
- 49
E. Bakambo Gracien, M. Lunguya Jérémie, L. Kanza-Kanza Joseph, M. Muamba Omer, N. Kambamba Nicole, N. Mafwa Fabrice, M. Bilasi Denis, N. Tresor, M. Perbon, M. Niasa Gérard, Adv. Mater.
2019, 8 (3), 112–119. DOI: https://doi.org/10.11648/j.am.20190803.13
10.11648/j.am.20190803.13 Google Scholar
- 50 Q. Li, L. S. Wang, B. Y. Hu, C. Yang, L. Zhou, L. Zhang, Mater. Lett. 2007, 61, 1615–1618. DOI: https://doi.org/10.1016/j.matlet.2006.07.113
- 51 V. Usha, R. Vettumperumal, S. Kalyanaraman, R. Thangavel, Int. J. Nanosci. 2018, 17 (5), 1850003. DOI: https://doi.org/10.1142/S0219581X18500035
- 52 S. K. W. Ningsih, M. Khair, Makara J. Sci. 2017, 21 (1), 19–24. DOI: https://doi.org/10.7454/mss.v21i1.7533
- 53 S. Pooyandeh, S. Shahidi, A. Khajehnezhad, Z. Ghoranneviss, J. Text. Inst. 2021, 112, 887–895. DOI: https://doi.org/10.1080/00405000.2020.1785606
- 54 M. Tadic, D. Nikolic, M. Panjan, G. R. Blake, J. Alloys Compd. 2015, 647, 1061–1068. DOI: https://doi.org/10.1016/j.jallcom.2015.06.027
- 55 S. Safa, R. Hejazi, M. Rabbani, R. Azimirad, Desalin. Water Treat. 2016, 57, 21982–21989. DOI: https://doi.org/10.1080/19443994.2015.1125799
- 56 K. Nguyen, N. D. Hoa, C. M. Hung, D. T. Thanh Le, N. Van Duy, N. Van Hieu, RSC Adv. 2018, 8, 19449–19455. DOI: https://doi.org/10.1039/c8ra02862a
- 57 A. Santhoshkumar, H. P. Kavitha, R. Suresh, J. Adv. Chem. Sci. 2016, 2 (2), 230–232.
- 58 M. Salavati-Niasari, N. Mir, F. Davar, J. Alloys Compd. 2010, 493, 163–168. DOI: https://doi.org/10.1016/j.jallcom.2009.11.153
- 59 X. Li, X. Zhang, Z. Li, Y. Qian, Solid State Commun. 2006, 137, 581–584. DOI: https://doi.org/10.1016/j.ssc.2006.01.031
- 60 S. Farhadi, Z. Roostaei-Zaniyani, Polyhedron 2011, 30, 971–975. DOI: https://doi.org/10.1016/j.poly.2010.12.044
- 61
K. Kalpanadevi, R. Manimekalai, Kongunadu Res. J
2016, 3 (1), 12–14. DOI: https://doi.org/10.26524/krj117
10.26524/krj117 Google Scholar
- 62 M. M. Kashani Motlagh, A. A. Youzbashi, F. Hashemzadeh, L. Sabaghzadeh, Powder Technol. 2013, 237, 562–568. DOI: https://doi.org/10.1016/j.powtec.2012.12.047
- 63 A. G. Al-Sehemi, A. S. Al-Shihri, A. Kalam, G. Dud, T. Ahmad, J. Mol. Struct. 2014, 1058, 56–61. DOI: https://doi.org/10.1016/j.molstruc.2013.10.065
- 64
A. Das, A. C. Mandal, P. M. G. Nambissan, Chin. Phys. B
2015, 24. DOI: https://doi.org/10.1088/1674-1056/24/4/046102
10.1088/1674?1056/24/4/046102 Google Scholar
- 65 F. Motahari, M. R. Mozdianfard, M. Salavati-Niasari, Process Saf. Environ. Prot. 2015, 93, 282–292. DOI: https://doi.org/10.1016/j.psep.2014.06.006
- 66 A. Angel Ezhilarasi, J. Judith Vijaya, K. Kaviyarasu, L. John Kennedy, R. J. Ramalingam, H. A. Al-Lohedan, J. Photochem. Photobiol. B 2018, 180, 39–50. DOI: https://doi.org/10.1016/j.jphotobiol.2018.01.023
- 67 B. A. Abbasi, J. Iqbal, T. Mahmood, R. Ahmad, S. Kanwal, S. Afridi, Mater. Res. Express 2019, 6, 0850a7. DOI: https://doi.org/10.1088/2053-1591/ab23e1
- 68 N. Mayedwa, N. Mongwaketsi, S. Khamlich, K. Kaviyarasu, N. Matinise, M. Maaza, Appl. Surf. Sci. 2018, 446, 266–272. DOI: https://doi.org/10.1016/j.apsusc.2017.12.116
- 69 A. A. Olajire, A. A. Mohammed, Adv. Powder Technol. 2020, 31, 211–218. DOI: https://doi.org/10.1016/j.apt.2019.10.012
- 70
M. I. Din, A. G. Nabi, A. Rani, A. Aihetasham, M. Mukhtar, Environ. Nanotechnol. Monit. Manage.
2018, 9, 29–36. DOI: https://doi.org/10.1016/j.enmm.2017.11.005
10.1016/j.enmm.2017.11.005 Google Scholar
- 71
S. Haq, S. Dildar, M. ben Ali, A. Mezni, A. Hedfi, M. I. Shahzad, N. Shahzad, A. Shah, Mater. Res. Express
2021, 8. DOI: https://doi.org/10.1088/2053-1591/abfc7c
10.1088/2053?1591/abfc7c Google Scholar
- 72
A. Haider, M. Ijaz, S. Ali, J. Haider, M. Imran, H. Majeed, I. Shahzadi, M. M. Ali, J. A. Khan, M. Ikram, Nanoscale Res. Lett.
2020, 15. DOI: https://doi.org/10.1186/s11671-020-3283-5
10.1186/s11671?020?3283?5 Google Scholar
- 73
S. Uddin, L. bin Safdar, S. Anwar, J. Iqbal, S. Laila, B. A. Abbasi, M. S. Saif, M. Ali, A. Rehman, A. Basit, Y. Wang, U. M. Quraishi, Molecules
2021, 26. DOI: https://doi.org/10.3390/molecules26061548
10.3390/molecules26061548 Google Scholar
- 74 R. Yuvakkumar, J. Suresh, A. J. Nathanael, M. Sundrarajan, S. I. Hong, Mater. Lett. 2014, 128, 170–174. DOI: https://doi.org/10.1016/j.matlet.2014.04.112
- 75 M. Aminuzzaman, C. Y. Chong, W. S. Goh, Y. K. Phang, T. Lai-Hock, S. Y. Chee, M. Akhtaruzzaman, S. Ogawa, A. Watanabe, J. Cluster Sci. 2021, 32, 949–958. DOI: https://doi.org/10.1007/s10876-020-01859-8
- 76 B. T. Sone, X. G. Fuku, M. Maaza, Int. J. Electrochem. Sci. 2016, 11, 8204–8220. DOI: https://doi.org/10.20964/2016.10.1
- 77 A. C. Nwanya, M. M. Ndipingwi, C. O. Ikpo, R. M. Obodo, S. C. Nwanya, S. Botha, F. I. Ezema, E. I. Iwuoha, M. Maaza, J. Alloys Compd. 2020, 822, 153581. DOI: https://doi.org/10.1016/j.jallcom.2019.153581
- 78 R. A. Raj, M. S. AlSalhi, S. Devanesan, Materials 2017, 10, 460. DOI: https://doi.org/10.3390/ma10050460
- 79 K. Karthik, M. Shashank, V. Revathi, T. Tatarchuk, Mol. Cryst. Liq. Cryst. 2018, 673, 70–80. DOI: https://doi.org/10.1080/15421406.2019.1578495
- 80 K. Kannan, D. Radhika, M. P. Nikolova, K. K. Sadasivuni, H. Mahdizadeh, U. Verma, Inorg. Chem. Commun. 2020, 113, 107755. DOI: https://doi.org/10.1016/j.inoche.2019.107755
- 81 A. K. H. Bashir, L. C. Razanamahandry, A. C. Nwanya, K. Kaviyarasu, W. Saban, H. E. A. Mohamed, S. K. O. Ntwampe, F. I. Ezema, M. Maaza, J. Phys. Chem. Solids 2019, 134, 133–140. DOI: https://doi.org/10.1016/j.jpcs.2019.05.048
- 82 J. Iqbal, B. A. Abbasi, R. Ahmad, M. Mahmoodi, A. Munir, S. A. Zahra, A. Shahbaz, M. Shaukat, S. Kanwal, S. Uddin, T. Mahmood, R. Capasso, Biomedicines 2020, 8, 117. DOI: https://doi.org/10.3390/biomedicines8050117
- 83 K. Lingaraju, H. Raja Naika, H. Nagabhushana, K. Jayanna, S. Devaraja, G. Nagaraju, Arabian J. Chem. 2020, 13, 4712–4719. DOI: https://doi.org/10.1016/j.arabjc.2019.11.003
- 84 P. Karpagavinayagam, A. Emi Princess Prasanna, C. Vedhi, Mater. Today: Proc. 2022, 48 (2), 136–142. DOI: https://doi.org/10.1016/j.matpr.2020.04.183
- 85 Z. Sabouri, A. Akbari, H. A. Hosseini, A. Hashemzadeh, M. Darroudi, J. Cluster Sci. 2019, 30, 1425–1434. DOI: https://doi.org/10.1007/s10876-019-01584-x
- 86 F. T. Thema, E. Manikandan, A. Gurib-Fakim, M. Maaza, J. Alloys Compd. 2016, 657, 655–661. DOI: https://doi.org/10.1016/j.jallcom.2015.09.227
- 87 H. Chen, J. Wang, D. Huang, X. Chen, J. Zhu, D. Sun, J. Huang, Q. Li, Mater. Lett. 2014, 122, 166–169. DOI: https://doi.org/10.1016/j.matlet.2014.02.028
- 88 J. Iqbal, B. A. Abbasi, T. Mahmood, S. Hameed, A. Munir, S. Kanwal, Appl. Organomet. Chem. 2019, 33, e4950. DOI: https://doi.org/10.1002/aoc.4950
- 89 A. T. Khalil, M. Ovais, I. Ullah, M. Ali, Z. K. Shinwari, D. Hassan, M. Maaza, Artif. Cells Nanomed. Biotechnol. 2018, 46, 838–852. DOI: https://doi.org/10.1080/21691401.2017.1345928
- 90 A. K. Gade, P. Bonde, A. P. Ingle, P. D. Marcato, N. Durán, M. K. Rai, J. Biobased Mater. Bioenergy 2008, 2, 243–247. DOI: https://doi.org/10.1166/jbmb.2008.401
- 91 N. Durán, P. D. Marcato, O. L. Alves, G. I. H. de Souza, E. Esposito, J. Nanobiotechnol. 2005, 3. DOI: https://doi.org/10.1186/1477-3155-3-8
- 92 M. Dias, I. Lacerda, P. Pimentel, H. de Castro, C. Rosa, Lett. Appl. Microbiol. 2001, 34, 46–50. DOI: https://doi.org/10.1046/j.1472-765x.2002.01040.x
- 93 R. Sanghi, P. Verma, Bioresour. Technol. 2009, 100, 501–504. DOI: https://doi.org/10.1016/j.biortech.2008.05.048
- 94 M. R. Salvadori, R. A. Ando, D. Muraca, M. Knobel, C. A. Oller Nascimento, B. Corrêa, RSC Adv. 2016, 6, 60683–60692. DOI: https://doi.org/10.1039/c6ra07274g
- 95 S. M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan, K. Adibkia, Mater. Sci. Eng., C. 2014, 44, 278–284. DOI: https://doi.org/10.1016/j.msec.2014.08.031
- 96 K. Wang, L. Li, H. Zhang, Int. J. Electrochem. Sci. 2013, 8, 4785–4791.
- 97 F. B. Zhang, Y. K. Zhou, H. L. Li, Mater. Chem. Phys. 2004, 83, 260–264. DOI: https://doi.org/10.1016/j.matchemphys.2003.09.046