Facile One-Pot Hydrothermal Synthesis of Copper Nanowires and Their Impact on the EMI Shielding Capability of Epoxy Composites
Bheema Rajesh Kumar
BITS Pilani, Department of Chemical Engineering, 333031 Pilani, Rajasthan, India
Search for more papers by this authorCorresponding Author
Krishna C. Etika
BITS Pilani, Department of Chemical Engineering, 333031 Pilani, Rajasthan, India
Correspondence: Krishna C. Etika ([email protected]), Department of Chemical Engineering, BITS Pilani, Pilani, Rajasthan 333031, India.Search for more papers by this authorBheema Rajesh Kumar
BITS Pilani, Department of Chemical Engineering, 333031 Pilani, Rajasthan, India
Search for more papers by this authorCorresponding Author
Krishna C. Etika
BITS Pilani, Department of Chemical Engineering, 333031 Pilani, Rajasthan, India
Correspondence: Krishna C. Etika ([email protected]), Department of Chemical Engineering, BITS Pilani, Pilani, Rajasthan 333031, India.Search for more papers by this authorAbstract
In this work epoxy nanocomposites containing varying content of copper nanowires (CuNW) were produced. The CuNW were synthesized using a facile one-pot hydrothermal synthesis method. The composites were characterized for their electrical conductivity and electromagnetic interference (EMI) shielding effectiveness in the X-band. The electrical conductivity of the epoxy composites was measured, and the composites containing 12 wt % CuNW demonstrated percolated behavior and exhibited a frequency-independent conductivity value of 1.76 × 10−6 S m−1 in the range of 25–200 Hz. The 12 wt % CuNW sample demonstrated an EMI shielding effectiveness value of 6.5 dB, which corresponds to 77.1 % attenuation of the incident electromagnetic wave. Furthermore, an absorption-dominated shielding mechanism was observed in these composites.
Supporting Information
Filename | Description |
---|---|
ceat202100389-sup-0001-misc_information.pdf196.7 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 K. Nasouri, A. M. Shoushtari, M. R. M. Mojtahedi, J. Polym. Res. 2016, 23 (4), 3–10. DOI: https://doi.org/10.1007/s10965-016-0943-3
- 2 L. Huang, J. Li, Y. Li, X. He, Y. Yuan, Nanoscale 2019, 11 (17), 8616–8625. DOI: https://doi.org/10.1039/c9nr02102g
- 3 K. Bhaskaran, R. K. Bheema, K. C. Etika, Synth. Met. 2020, 265, 116374. DOI: https://doi.org/10.1016/j.synthmet.2020.116374
- 4 D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, et al., Polym. Rev. 2019, 59 (2), 280–337. DOI: https://doi.org/10.1080/15583724.2018.1546737
- 5
R. Kumar, K. Kumar, N. Etakula, K. C. Etika, Compos. Part C: Open Access
2021, 4, 100086. DOI: https://doi.org/10.1016/j.jcomc.2020.100086
10.1016/j.jcomc.2020.100086 Google Scholar
- 6 V. Uma Varun, B. Rajesh Kumar, K. C. Etika, Mater. Today Proc. 2020, 28, 796–798. DOI: https://doi.org/10.1016/j.matpr.2019.12.300
- 7 X. C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press, Boca Raton 2009.
- 8 X. Xia, Y. Wang, Z. Zhong, G. J. Weng, J. Appl. Phys. 2016, 120 (8). DOI: https://doi.org/10.1063/1.4961401
- 9 S. R. Dhakate, K. M. Subhedar, B. P. Singh, RSC Adv. 2015, 5 (54), 43036–43057. DOI: https://doi.org/10.1039/c5ra03409d
- 10 Y. Wang, X. Jing, Polym. Adv. Technol. 2005, 16 (4), 344–351. DOI: https://doi.org/10.1002/pat.589
- 11 V. Shukla, Nanoscale Adv. 2019, 1 (5), 1640–1671. DOI: https://doi.org/10.1039/c9na00108e
- 12
P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, S. Thomas, in Advanced Composite Materials for Aerospace Engineering (Eds: S. Rana, R. Fangueiro), Elsevier, Amsterdam
2016, pp. 365–383. DOI: https://doi.org/10.1016/b978-0-08-100037-3.00012-2
10.1016/B978-0-08-100037-3.00012-2 Google Scholar
- 13 Y. Yao, S. Jin, H. Zou, L. Li, X. Ma, G. Lv, F. Gao, X. Lv, Q. Shu, J. Mater. Sci. 2021, 56 (11), 6549–6580. DOI: https://doi.org/10.1007/s10853-020-05635-x
- 14 P. Kumar, U. Narayan Maiti, A. Sikdar, T. Kumar Das, A. Kumar, V. Sudarsan, Polym. Rev. 2019, 59 (4), 687–738. DOI: https://doi.org/10.1080/15583724.2019.1625058
- 15 J. M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng. R: Reports 2013, 74 (7), 211–232. DOI: https://doi.org/10.1016/j.mser.2013.06.001
- 16 F. Dalmas, R. Dendievel, L. Chazeau, J. Y. Cavaillé, C. Gauthier, Acta Mater. 2006, 54 (11), 2923–2931. DOI: https://doi.org/10.1016/j.actamat.2006.02.028
- 17
M. Foygel, R. D. Morris, D. Anez, S. French, V. L. Sobolev, Phys. Rev. B: Condens. Matter Mater. Phys.
2005, 71 (10), 1–8. DOI: https://doi.org/10.1103/PhysRevB.71.104201
10.1103/PhysRevB.71.104201 Google Scholar
- 18 A. Celzard, E. McRae, C. Deleuze, M. Dufort, Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 53 (10), 6209–6214. DOI: https://doi.org/10.1103/PhysRevB.53.6209
- 19 S. H. Munson-Mcgee, Phys. Rev. B 1991, 43 (4), 3331–3336. DOI: https://doi.org/10.1103/PhysRevB.43.3331
- 20 S. H. Osman, A. Atallah, Macromol. Rapid Commun. 2004, 25 (17), 1540–1544. DOI: https://doi.org/10.1002/marc.200400254
- 21 Z. Liu, Y. Bando, Adv. Mater. 2003, 15 (4), 303–305. DOI: https://doi.org/10.1002/adma.200390073
- 22 D. Mott, J. Galkowski, L. Wang, J. Luo, C. J. Zhong, Langmuir 2007, 23 (10), 5740–5745. DOI: https://doi.org/10.1021/la0635092
- 23 D. V. Ravi Kumar, K. Woo, J. Moon, Nanoscale 2015, 7 (41), 17195–17210. DOI: https://doi.org/10.1039/c5nr05138j
- 24 S. Li, Y. Chen, L. Huang, D. Pan, Inorg. Chem. 2014, 53 (9), 4440–4444. DOI: https://doi.org/10.1021/ic500094b
- 25 E. Ye, S. Y. Zhang, S. Liu, M. Y. Han, Chem. – Eur. J. 2011, 17 (11), 3074–3077. DOI: https://doi.org/10.1002/chem.201002987
- 26 C. Yong, B. C. Zhang, C. S. Seet, A. See, L. Chan, J. Sudijono, S. L. Liew, C. H. Tung, H. C. Zeng, J. Phys. Chem. B 2002, 106 (48), 12366–12368. DOI: https://doi.org/10.1021/jp026668c
- 27 X. Li, Y. Wang, C. Yin, Z. Yin, J. Mater. Chem. C 2020, 8 (3), 849–872. DOI: https://doi.org/10.1039/c9tc04744a
- 28 H. J. Yang, S. Y. He, H. Y. Tuan, Langmuir 2014, 30 (2), 602–610. DOI: https://doi.org/10.1021/la4036198
- 29 L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 2004, 304 (5669), 422–426. DOI: https://doi.org/10.1126/science.1092905
- 30 T. Gao, G. Meng, Y. Wang, S. Sun, L. Zhang, J. Phys. Condens. Matter 2002, 14 (3), 355–363. DOI: https://doi.org/10.1088/0953-8984/14/3/306
- 31 M. Tian, J. Wang, J. Kurtz, T. E. Mallouk, M. H. Chan, Nano Lett. 2003, 3 (7), 919–923. DOI: https://doi.org/10.1021/nl034217d
- 32 B. Zeng, Y. Wang, P. Liu, J. Yang, L. Liu, Nanoscale Res. Lett. 2018, 13 (1), 78. DOI: https://doi.org/10.1186/s11671-018-2486-5
- 33 H. Yoon, D. S. Shin, B. Babu, T. G. Kim, K. M. Song, J. Park, Mater. Des. 2017, 132, 66–71. DOI: https://doi.org/10.1016/j.matdes.2017.06.042
- 34 T. Xia, D. Zeng, Z. Li, R. J. Young, C. Vallés, I. A. Kinloch, Compos. Sci. Technol. 2018, 164, 304–312. DOI: https://doi.org/10.1016/j.compscitech.2018.05.053
- 35 R. Ravindren, S. Mondal, K. Nath, N. C. Das, Compos. Part B: Eng. 2019, 164, 559–569. DOI: https://doi.org/10.1016/j.compositesb.2019.01.066
- 36 G. A. Gelves, M. H. Al-Saleh, U. Sundararaj, J. Mater. Chem. 2011, 21 (3), 829–836. DOI: https://doi.org/10.1039/c0jm02546a
- 37 M. H. Al-Saleh, G. A. Gelves, U. Sundararaj, Compos. Part A: Appl. Sci. Manuf. 2011, 42 (1), 92–97. DOI: https://doi.org/10.1016/j.compositesa.2010.10.003
- 38
N. Zeng, J. Ma, Y. Zhang, G. Yang, S. Zhang, P. Zhang, J. Nanopart. Res.
2017, 19 (3). DOI: https://doi.org/10.1007/s11051-017-3784-z
10.1007/s11051?017?3784?z Google Scholar
- 39 L. Wang, L. Chen, P. Song, C. Liang, Y. Lu, H. Qiu, Y. Zhang, J. Kong, J. Gu, Compos. Part B: Eng. 2019, 171, 111–118. DOI: https://doi.org/10.1016/j.compositesb.2019.04.050
- 40 K. Zhang, J. Luo, N. Yu, M. Gu, X. Sun, J. Alloys Compd. 2019, 779, 270–279. DOI: https://doi.org/10.1016/j.jallcom.2018.11.284
- 41 A. Kumar, P. S. Alegaonkar, ACS Appl. Mater. Interfaces 2015, 7 (27), 14833–14842. DOI: https://doi.org/10.1021/acsami.5b03122
- 42 H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma, J. Qin, M. Wang, J. K. Kim, Chem. Eng. J. 2020, 379, 122304. DOI: https://doi.org/10.1016/j.cej.2019.122304
- 43 T. K. Gupta, B. P. Singh, V. N. Singh, S. Teotia, A. P. Singh, I. Elizabeth, S. R. Dhakate, S. K. Dhawan, R. B. Mathur, J. Mater. Chem. A 2014, 2 (12), 4256–4263. DOI: https://doi.org/10.1039/c3ta14854h