Numerical Representation of the Operating Behavior of a Crossflow Friction Turbomachine
Corresponding Author
Julian Praß
Friedrich-Alexander-University Erlangen-Nuremberg, Institute for Factory Automation and Production Systems (FAPS), Fuerther Strasse 246b, 90429 Nuremberg, Germany
Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Process Machinery and Engineering Systems (iPAT), Cauerstrasse 4, 91058 Nuremberg, Germany
Correspondence: Julian Praß ([email protected]), Friedrich-Alexander-University Erlangen-Nuremberg, Institute for Factory Automation and Production Systems (FAPS), Fuerther Strasse 246b, 90429 Nuremberg, Germany.Search for more papers by this authorJörg Riedel
Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Process Machinery and Engineering Systems (iPAT), Cauerstrasse 4, 91058 Nuremberg, Germany
Search for more papers by this authorAndreas Renz
Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Process Machinery and Engineering Systems (iPAT), Cauerstrasse 4, 91058 Nuremberg, Germany
Search for more papers by this authorJörg Franke
Friedrich-Alexander-University Erlangen-Nuremberg, Institute for Factory Automation and Production Systems (FAPS), Fuerther Strasse 246b, 90429 Nuremberg, Germany
Search for more papers by this authorStefan Becker
Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Process Machinery and Engineering Systems (iPAT), Cauerstrasse 4, 91058 Nuremberg, Germany
Search for more papers by this authorCorresponding Author
Julian Praß
Friedrich-Alexander-University Erlangen-Nuremberg, Institute for Factory Automation and Production Systems (FAPS), Fuerther Strasse 246b, 90429 Nuremberg, Germany
Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Process Machinery and Engineering Systems (iPAT), Cauerstrasse 4, 91058 Nuremberg, Germany
Correspondence: Julian Praß ([email protected]), Friedrich-Alexander-University Erlangen-Nuremberg, Institute for Factory Automation and Production Systems (FAPS), Fuerther Strasse 246b, 90429 Nuremberg, Germany.Search for more papers by this authorJörg Riedel
Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Process Machinery and Engineering Systems (iPAT), Cauerstrasse 4, 91058 Nuremberg, Germany
Search for more papers by this authorAndreas Renz
Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Process Machinery and Engineering Systems (iPAT), Cauerstrasse 4, 91058 Nuremberg, Germany
Search for more papers by this authorJörg Franke
Friedrich-Alexander-University Erlangen-Nuremberg, Institute for Factory Automation and Production Systems (FAPS), Fuerther Strasse 246b, 90429 Nuremberg, Germany
Search for more papers by this authorStefan Becker
Friedrich-Alexander-University Erlangen-Nuremberg, Institute of Process Machinery and Engineering Systems (iPAT), Cauerstrasse 4, 91058 Nuremberg, Germany
Search for more papers by this authorAbstract
Based on the Tesla-type turbomachinery principle of operation, a fan consisting of flat, round discs arranged in between two separate channels, which generate two air flows in opposite directions, is investigated. Simulations of a model with one disc as well as a five-channel model at different grids were performed. With almost unthrottled operation, secondary flows could be determined at velocity magnitudes of up to 20 % of the mean main flow velocity, with secondary currents reaching up to 50 % in throttled operation. Besides high dissipation and recirculation, these secondary currencies are found to be capable of reducing the overall efficiency of the system. Thus, topic of further investigations is the potential of increasing efficiency by means of straighteners and geometric adaptions.
References
- 1 S. Becker, T. Beede, R. Pauer, Entwicklung eines neuartigen Gerätes zur dezentralen Be- und Entlüftung von Räumen mit Wärmerückgewinn, Strömungstechnische Tagung 2014, Dresden, October 2014.
- 2
K. Millsaps, K. Pohlhausen, J. Aeronaut. Sci.
1951, 18 (5), 354. DOI: https://doi.org/10.2514/8.1955
10.2514/8.1955 Google Scholar
- 3 E. C. Cobb, O. A. Saunders, Proc. R. Soc. London, Ser. A 1956, 236 (1206), 343. DOI: https://doi.org/10.1098/rspa.1956.0141
- 4 F. Kreith, E. Doughman, H. Kozlowski, J. Heat Transfer 1963, 85 (2), 153. DOI: https://doi.org/10.1115/1.3686038
- 5 F. Kreith, Ph.D. Thesis, University of Colorado, Boulder 1969.
- 6 B. Latour, P. Bouvier, S. Harmand, J. Heat Transfer 2011, 133 (2), 021702. DOI: https://doi.org/10.1115/1.4002603
- 7 B. Latour, P. Bouvier, S. Harmand, Int. J. Heat Mass Transfer 2011, 54 (21–22), 4710. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.006
- 8 T. D. Nguyen, S. Harmand, Int. J. Heat Mass Transfer 2013, 64, 1014. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.037
- 9 S. aus der Wiesche, Int. J. Therm. Sci. 2007, 46 (8), 745. DOI: https://doi.org/10.1016/j.ijthermalsci.2006.10.013
- 10 C.-M. Trinkl, U. Bardas, A. Weyck, S. aus der Wiesche, Int. J. Therm. Sci. 2011, 50 (1), 73. DOI: https://doi.org/10.1016/j.ijthermalsci.2010.08.012
- 11 C. Helcig, S. aus der Wiesche, I. V. Shevchuk, J. Heat Transfer 2017, 139 (10), 101702. DOI: https://doi.org/10.1115/1.4036729
- 12
S. aus der Wiesche, C. Helcig, Convective Heat Transfer from Rotating Disks Subjected to Streams of Air, Springer, Cham
2016.
10.1007/978-3-319-20167-2 Google Scholar
- 13 N. Tesla, US , 1911. 1,061,206
- 14 W. Rice, IV Int. Nikola Tesla Symp., Belgrade, September 1991.
- 15 C. R. Truman, W. Rice, D. F. Jankowski, J. Fluids Eng. 1978, 100 (2), 194. DOI: https://doi.org/10.1115/1.3448629
- 16 C. R. Truman, W. Rice, D. F. Jankowski, J. Fluids Eng. 1979, 101 (1), 87. DOI: https://doi.org/10.1115/1.3448740
- 17 D. Nendl, Ph.D. Thesis, RWTH Aachen 1966.
- 18 M. Köhler, Ph.D. Thesis, University of Karlsruhe 1969.
- 19 M. Köhler, Acta Mech. 1971, 12 (1–2), 33. DOI: https://doi.org/10.1007/BF01178388
- 20 K. O. Felsch, M. Piesche, Acta Mech. 1981, 38 (1–2), 19. DOI: https://doi.org/10.1007/BF01351460
- 21 M. Piesche, K. O. Felsch, Acta Mech. 1981, 41 (1–2), 99. DOI: https://doi.org/10.1007/BF01246907
- 22 J. Praß, in Tagungsband zum 2. Green Factory Bavaria Kolloquium 2015 (Eds: J. Franke, S. Kreitlein, A. Höft), Friedrich-Alexander-University Erlangen-Nuremberg, Nuremberg 2015.
- 23 J. Praß, J. Bürner, J. Franke, Umwelt-Technologie und Energie in Bayern 2018, 46.
- 24 J. Praß, J. Bürner, J. Franke, Environment and Energy in Bavaria 2018, 29.
- 25 J. Praß, J. Franke, in Tagungsband zum 1. E-Home-Symposium 2016 (Eds: J. Franke, M. Michl, J. Bauer, R. Böhm), Friedrich-Alexander-University Erlangen-Nuremberg, Nuremberg 2016.
- 26
J. Praß, M. Reinelt, J. Franke, S. Becker, Appl. Mech. Mater.
2017, 871, 252. DOI: https://doi.org/10.4028/www.scientific.net/AMM.871.252
10.4028/www.scientific.net/AMM.871.252 Google Scholar
- 27
A. Renz, J. Praß, J. Weber, S. Becker, Adv. Eng. Forum
2016, 19, 43. DOI: https://doi.org/10.4028/www.scientific.net/AEF.19.43
10.4028/www.scientific.net/AEF.19.43 Google Scholar
- 28 J. Praß, J. Weber, S. Staub, J. Bürner, R. Böhm, T. Braun, M. Hein, M. Michl, M. Beck, J. Franke, in Smart Cities: Foundations, Principles, and Applications (Eds: H. Song, R. Srinivasan, T. Sookoor, S. Jeschke), John Wiley & Sons, Hoboken, NJ 2017.
- 29 A. Renz, J. Praß, J. Riedel, O. Nadler, S. Becker, in Proc. of the Int. Conf. on Fan Noise, Aerodynamics, Applications and Systems (Ed: G. Sheard), FAN, Darmstadt 2018.
- 30
J. Praß, A. Renz, J. Weber, S. Becker, J. Franke, Adv. Eng. Forum
2016, 19, 35. DOI: https://doi.org/10.4028/www.scientific.net/AEF.19.35
10.4028/www.scientific.net/AEF.19.35 Google Scholar
- 31
Computational Methods for Fluid Dynamics (Eds: J. H. Ferziger, M. Perić), 3rd ed., Springer, Berlin
2002.
10.1007/978-3-642-56026-2 Google Scholar
- 32 F. R. Menter, Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows, NASA Technical Memorandum 103975, National Aeronautics and Space Administration, Moffett Field, CA 1992.
- 33 F. Menter, 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conf., Orlando, FL, July 1993. DOI: https://doi.org/10.2514/6.1993-2906
- 34 S. B. Pope, Turbulent Flows, 8th ed., Cambridge University Press, Cambridge 2011.
- 35 F. Durst, Grundlagen der Strömungsmechanik: Eine Einführung in die Theorie der Strömung von Fluiden, Springer, Berlin 2006.