Modeling of Biomass Gasification in a Downdraft Gasifier with Integrated Tar Adsorption
Corresponding Author
Andy Gradel
University of Applied Sciences Hof, Institute for Water and Energy Management, Center of Technology (ZET), Alfons-Goppel-Platz 1, 95028 Hof, Germany
Correspondence: Andy Gradel ([email protected]), University of Applied Sciences Hof, Institute for Water and Energy Management, Center of Technology (ZET), Alfons-Goppel-Platz 1, 95028 Hof, Germany.Search for more papers by this authorRobert Honke
University of Applied Sciences Hof, Institute for Water and Energy Management, Center of Technology (ZET), Alfons-Goppel-Platz 1, 95028 Hof, Germany
Search for more papers by this authorJoachim Alfred Wünning
WS Wärmeprozesstechnik GmbH, Dornierstrasse 14, 71272 Renningen, Germany
Search for more papers by this authorTobias Plessing
University of Applied Sciences Hof, Institute for Water and Energy Management, Center of Technology (ZET), Alfons-Goppel-Platz 1, 95028 Hof, Germany
Search for more papers by this authorAndreas Jess
University of Bayreuth, Chair of Chemical Engineering, Center of Technology (ZET), Universitaetsstrasse 30, 95447 Bayreuth, Germany
Search for more papers by this authorCorresponding Author
Andy Gradel
University of Applied Sciences Hof, Institute for Water and Energy Management, Center of Technology (ZET), Alfons-Goppel-Platz 1, 95028 Hof, Germany
Correspondence: Andy Gradel ([email protected]), University of Applied Sciences Hof, Institute for Water and Energy Management, Center of Technology (ZET), Alfons-Goppel-Platz 1, 95028 Hof, Germany.Search for more papers by this authorRobert Honke
University of Applied Sciences Hof, Institute for Water and Energy Management, Center of Technology (ZET), Alfons-Goppel-Platz 1, 95028 Hof, Germany
Search for more papers by this authorJoachim Alfred Wünning
WS Wärmeprozesstechnik GmbH, Dornierstrasse 14, 71272 Renningen, Germany
Search for more papers by this authorTobias Plessing
University of Applied Sciences Hof, Institute for Water and Energy Management, Center of Technology (ZET), Alfons-Goppel-Platz 1, 95028 Hof, Germany
Search for more papers by this authorAndreas Jess
University of Bayreuth, Chair of Chemical Engineering, Center of Technology (ZET), Universitaetsstrasse 30, 95447 Bayreuth, Germany
Search for more papers by this authorAbstract
Thermal gasification of biomass is known for its capabilities in flexible and decentral power station applications for cogeneration. However, the product gas contains tar compounds adversely for a stable operation. Integrated tar adsorption in a subsequent cooled section is therefore an option to reduce the tar pollution. The char coal, used here as adsorption agent, is formed by biomass pyrolysis in the gasifier. A kinetic model is proposed, considering the kinetics of all main reactions as well as heat and mass transport phenomena. Results are presented for axial temperature profiles, gas compositions, and the gas purity at different air-to-fuel ratios. The resulting output mass flows could indicate a requirement on the adsorption capacity of at least 0.3 g g−1 for the activated char coal.
References
- 1 D. Klass, Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, San Diego, CA 1998.
- 2
Energie aus Biomasse, 2nd ed. (Eds.: M. Kaltschmitt, H. Hartmann, H. Hofbauer), Springer, Heidelberg
2009.
10.1007/978-3-540-85095-3 Google Scholar
- 3 J. A. Wünning, 2015. EP000003088492B1
- 4 J. Han, H. Kim, Renewable Sustainable Energy Rev. 2006, 12 (2), 397–416. DOI: https://doi.org/10.1016/j.rser.2006.07.015;
- 5 Z. Du Din, Z. A. Zainal, J. Clean. Prod. 2018, 184, 1–11. DOI: https://doi.org/1016/j.jclepro.2018.02.198
- 6 X. Zeng, F. Wang, Y. Sun, J. Zhang, S. Tang, G. Xu, Fuel 2018, 231, 18–25. DOI: https://doi.org/10.1016/j.fuel.2018.05.043
- 7 P. J. Woolcock, R. C. Brown, Biomass Bioenergy 2013, 25, 54–84. DOI: https://doi.org/10.1016/j.biombioe.2013.02.036
- 8 F. Guo, X. Li, Y. Liu, K. Peng, C. Guo, Z. Rao, Energy Convers. Manage. 2018, 167, 81–90. DOI: https://doi.org/10.1016/j.enconman.2018.04.094
- 9 A. Paethanom, S. Nakahara, M. Kobayashi, P. Prawisudha, K. Yoshikawa, Fuel Process. Technol. 2012, 104, 144–154. DOI: https://doi.org/10.1016/j.fuproc.2012.05.006
- 10 N. A. Ahmad, Z. A. Zainal, J. Nat. Gas. Sci. Eng. 2016, 32, 256–261. DOI: https://doi.org/10.1016/j.jngse.2016.03.015
- 11 J. Karl, Dezentrale Energiesysteme, 3rd ed., Oldenbourg, Munich 2009.
- 12DIN EN 14961-2, Solid biofuels – Fuel Specifications and Classes – Part 2: Wood Pellets for Nonindustrial Use, Beuth-Verlag, Berlin 2011.
- 13 T. K. Patra, P. N. Seth, Renewable Sustainable Energy Rev. 2015, 50, 583–590. DOI: https://doi.org/10.1016/j.rser.2015.05.012
- 14 C. Di Blasi, Chem. Eng. Sci. 2000, 55 (15), 2931–2944. DOI: https://doi.org/10.1016/S0009-2509(99)00562-X
- 15 M. Hobbs, P. Radulovic, L. Smoot, Prog. Energy Combust. Sci. 1993, 19 (6), 505–586. DOI: https://doi.org/10.1016/0360-1285(93)90003-W
- 16 H. Yoon, J. Wei, M. M. Denn, AIChE J. 1978, 24 (5), 885–903. DOI: https://doi.org/10.1002/aic.690240515
- 17 A. K. Sharma, Energy Convers. Manage. 2015, 52 (2), 1386–1396. DOI: https://doi.org/10.1016/j.enconman.2010.10.001
- 18 E. N. Fuller, P. D. Shettler, J. Giddings, Ind. Eng. Chem. 1966, 58 (5), 18–27. DOI: https://doi.org/10.1021/ie50677a007
- 19
Wärme- und Stoffübertragung, 7th ed. (Eds.: H. Baehr, K. Stephan), Springer, Heidelberg
1998.
10.1007/978-3-662-10835-2 Google Scholar
- 20 Chemical Technology (Eds.: A. Jess, P. Wasserscheid), Wiley-VCH, Weinheim 2013.
- 21 P. Grathwohl, Diffusion in Natural Porous Media, Springer, Heidelberg 1998.
- 22 S. Bajohr, J. Hoferer, R. Reimert, G. Schaub, in Tagungsbericht “Energetische Nutzung von Biomassen”, DGMK, Velen 2002, 167–174.
- 23 A. Jensen, J. E. Johnsson, J. Adries, K. Laughlin, G. Read, M. Mayer, H. Baumann, B. Bonn, Fuel 1995, 74 (11), 1555–1569. DOI: https://doi.org/10.1016/0016-2361(95)00155-X
- 24 M. de Souza-Santos, Fuel 1989, 68 (12), 29–37. DOI: https://doi.org/10.1016/0016-2361(89)90288-3
- 25 K. Bryden, K. Ragland, Energy Fuels 1996, 10 (2), 269–275. DOI: https://doi.org/10.1021/ef950193p
- 26 J. Moe, Chem. Eng. Prog. 1962, 58 (3), 33–36.
- 27 VDI Wärmeatlas, Verein deutscher Ingenieure, 11th ed., Springer, Heidelberg 2013.
- 28 Chemical Reactor Analysis and Design, 3rd ed. (Eds.: G. F. Froment, K. B. Bischoff, J. De Wilde), John Wiley & Sons, Hoboken, NJ 2010.
- 29 Perry's Chemical Engineers' Handbook, 8th ed. (Eds.: D. W. Green, R. H. Perry), McGraw-Hill Professional, New York 2007.
- 30 D. Kunii, J. Smith, AlChE J. 1960, 6 (1), 71–77. DOI: https://doi.org/10.1002/aic.690060115
- 31 A. de Wasch, G. Froment, Chem. Eng. Sci. 1971, 26 (5), 629–634. DOI: https://doi.org/10.1016/0009-2509(71)86006-2
- 32 T. Dobre, O. C. Parvulescu, G. Iavorschi, M. Stroescu, A. Stoica, Analele Universitatii din Oradea, Fascicula: Ecotoxicologie 2010, 25, 841–846.
- 33 W. Kast, Adsorption aus der Gasphase, Wiley-VCH, Weinheim 1988.
- 34DIN 51705, Testing of Solid Fuels – Determination of the Bulk Density of Solid Fuels, Beuth-Verlag, Berlin 2001.
- 35DIN 51718, Testing of Solid Fuels – Determination of the Water Content and the Moisture of Analysis Samples, Beuth-Verlag, Berlin 2002.
- 36DIN 51719, Testing of Solid Fuels – Solid Mineral Fuels – Determination of Ash Content, Beuth-Verlag, Berlin 1997.
- 37DIN 51900-1, Testing of Solid and Liquid Fuels – Determination of Gross Calorific Value by the Bomb Calorimeter and Calculation of Net Calorific Value, Beuth-Verlag, Berlin 2000.
- 38 M. L. Boroson, J. B. Howard, J. P. Longwell, W. A. Peters, AlChE J. 1989, 35 (1), 120–129. DOI: https://doi.org/10.1002/aic.690350113
- 39 C. Di Blasi, Chem. Eng. Sci. 1996, 51 (7), 1121–1132. DOI: https://doi.org/10.1016/S0009-2509(96)80011-X
- 40 W. M. Haynes, HCRC Handbook of Chemistry and Physics, 95th ed., CRC Press, Boca Raton, FL 2014.
- 41 V. Biba, J. Malecha, J. Macak, E. Klose, Ind. Eng. Chem. Process Des. Dev. 1978, 17 (1), 92–98. DOI: https://doi.org/10.1021/i260065a017