Fabrication of Bone Scaffolds from Cockle Shell Waste
Siti Hajar Saharudin
Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Jun Haslinda Shariffuddin
Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Universiti Malaysia Pahang, Centre of Excellence for Advanced Research in Fluid Flow, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Correspondence: Jun Haslinda Shariffuddin ([email protected]), Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.Search for more papers by this authorNoor Ida Amalina Ahamad Nordin
Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorSiti Hajar Saharudin
Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Jun Haslinda Shariffuddin
Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Universiti Malaysia Pahang, Centre of Excellence for Advanced Research in Fluid Flow, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Correspondence: Jun Haslinda Shariffuddin ([email protected]), Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.Search for more papers by this authorNoor Ida Amalina Ahamad Nordin
Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Search for more papers by this authorAbstract
Bone scaffold is a three-dimensional structure composed of materials that could enhance bone regeneration. Bone scaffolds were prepared using freeze-drying by varying the cockle shell powder concentration where sodium alginate acted as matrix. The scaffolds were then characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, texture analyzer, and liquid displacement method. The bioactivity of the scaffolds was evaluated by immersion into a simulated body fluid solution. Cockle shell powder concentrations affected the bone scaffold characteristics. The increment of the powder concentrations improved the physicochemical properties and bioactivity of the scaffolds.
References
- 1 B. D. Winslow, H. Shao, R. J. Stewart, P. A. Tresco, Biomaterials 2010, 31 (36), 9373–9381. DOI: https://doi.org/10.1016/j.biomaterials.2010.07.078
- 2 A. Z. Jaji, M. Z. Bakar, R. Mahmud, M. Y. Loqman, M. N. Hezmee, T. Isa, F. Wenliang, N. I. Hammadi, Nanotechnol. Sci. Appl. 2017, 10, 23–33. DOI: https://doi.org/10.2147/NSA.S113030
- 3 I. Abdulrahman, H. I. Tijani, B. A. Mohammed, H. Saidu, H. Yusuf, M. Ndejiko Jibrin, S. Mohammed, J. Mater. 2014, 2014, 1–6. DOI: https://doi.org/10.1155/2014/802467
- 4 A. Shafiu Kamba, Z. A. Zakaria, Biomed Res. Int. 2014, 2014, 1–9. DOI: https://doi.org/10.1155/2014/215097
- 5
P. Kumar, B. Vinitha, G. Fathima, J. Pharm. Bioallied Sci.
2013, 5 (Suppl. 1), S125–127. DOI: https://doi.org/10.4103/0975-7406.113312
10.4103/0975-7406.113312 Google Scholar
- 6 E. K. Cushnie, Y. M. Khan, C. T. Laurencin, J. Biomed. Mater. Res. A 2008, 84 (1), 54–62. DOI: https://doi.org/10.1002/jbm.a.31380
- 7 D. Chakravarty, C. S. Tiwary, C. F. Woellner, S. Radhakrishnan, S. Vinod, S. Ozden, P. A. da Silva Autreto, S. Bhowmick, S. Asif, S. A. Mani, D. S. Galvao, P. M. Ajayan, Adv. Mater. 2016, 28 (40), 8959–8967. DOI: https://doi.org/10.1002/adma.201603146
- 8 S. Pina, J. M. Oliveira, R. L. Reis, Adv. Mater. 2015, 27 (7), 1143–1169. DOI: https://doi.org/10.1002/adma.201403354
- 9 J. Aragón, R. González, G. Fuentes, L. Palin, G. Croce, D. Viterbo, Mater. Res. 2011, 14 (1), 25–30. DOI: https://doi.org/10.1590/s1516-14392011005000012
- 10 S. Bose, M. Roy, A. Bandyopadhyay, Trends Biotechnol. 2012, 30 (10), 546–554. DOI: https://doi.org/10.1016/j.tibtech.2012.07.005
- 11 B. H. Bharatham, M. Z. Abu Bakar, E. K. Perimal, L. M. Yusof, M. Hamid, Biomed Res. Int. 2014, 2014, 1–11. DOI: https://doi.org/10.1155/2014/146723
- 12 K. T. Shalumon, K. H. Anulekha, S. V. Nair, S. V. Nair, K. P. Chennazhi, R. Jayakumar, Int. J. Biol. Macromol. 2011, 49 (3), 247–254. DOI: https://doi.org/10.1016/j.ijbiomac.2011.04.005
- 13 J. A. Sowjanya, J. Singh, T. Mohita, S. Sarvanan, A. Moorthi, N. Srinivasan, N. Selvamurugan, Colloids Surf., B 2013, 109, 294–300. DOI: https://doi.org/10.1016/j.colsurfb.2013.04.006
- 14 G. S. Lee, J. H. Park, U. S. Shin, H. W. Kim, Acta Biomater. 2011, 7 (8), 3178–3186. DOI: https://doi.org/10.1016/j.actbio.2011.04.008
- 15 A. Shafiu Kamba, M. Ismail, T. A. Tengku Ibrahim, Z. A. B. Zakaria, J. Nanomater. 2013, 2013, 1–9. DOI: https://doi.org/10.1155/2013/398357
- 16 M. R. R. Hamester, P. S. Balzer, D. Becker, Mater. Res. 2012, 15 (2), 204–208. DOI: https://doi.org/10.1590/s1516-14392012005000014
- 17 K. Fujihara, M. Kotaki, S. Ramakrishna, Biomaterials 2005, 26 (19), 4139–4147. DOI: https://doi.org/10.1016/j.biomaterials.2004.09.014
- 18 X. X. Wang, L. Xie, R. Wang, Biomaterials 2005, 26 (31), 6229–6232. DOI: https://doi.org/10.1016/j.biomaterials.2005.03.029
- 19 N. Ahmad, H. B. Bharatham, Z. Abdul Hamid, N. Z. Zulkipli, Malaysian J. Health Sci. 2017, 15 (1), 97–104. DOI: https://doi.org/10.17576/jskm-2017-1501-12
- 20
S. H. Saharudin, J. H. Shariffuddin, N. I. A. A. Nordin, IOP Conf. Ser.: Mater. Sci. Eng.
2017, 257, 012061. DOI: https://doi.org/10.1088/1757-899x/257/1/012061
10.1088/1757-899X/257/1/012061 Google Scholar
- 21 H. R. Lin, Y. J. Yeh, J. Biomed. Mater. Res. Part B 2004, 71 (1), 52–65. DOI: https://doi.org/10.1002/jbm.b.30065
- 22 R. Bilgainya, F. Khan, S. Mann, Mater. Sci. Eng. C 2010, 30 (3), 352–356. DOI: https://doi.org/10.1016/j.msec.2009.11.010
- 23 H. L. Kim, G. Y. Jung, J. H. Yoon, J. S. Han, Y. J. Park, D. G. Kim, M. Zhang, D. J. Kim, Mater. Sci. Eng., C 2015, 54, 20–25. DOI: https://doi.org/10.1016/j.msec.2015.04.033
- 24 S. K. Mahmood, M. Zakaria, I. Razak, L. M. Yusof, A. Z. Jaji, I. Tijani, N. I. Hammadi, Biochem. Biophys. Rep. 2017, 10, 237–251. DOI: https://doi.org/10.1016/j.bbrep.2017.04.008
- 25 N. Bhardwaj, S. C. Kundu, Carbohydr. Polym. 2011, 85 (2), 325–333. DOI: https://doi.org/10.1016/j.carbpol.2011.02.027
- 26 T. Kokubo, H. Takadama, Biomaterials 2006, 27 (15), 2907–2915. DOI: https://doi.org/10.1016/j.biomaterials.2006.01.017
- 27 S. Qi, Y. Huang, Q. Lin, H. Cheng, H. J. Seo, Ceram. Int. 2015, 41 (9), 12011–12019. DOI: https://doi.org/10.1016/j.ceramint.2015.06.013
- 28 N. Iqbal, M. R. A. Kadir, S. Iqbal, S. Izwan, A. Razak, M. S. Rafique, H. R. Bakhsheshi-Rad, M. H. Idris, M. A. Khattak, H. R. B. Raghavendran, A. A. Abbas, Ceram. Int. 2016, 42 (6), 7175–7182. DOI: https://doi.org/10.1016/j.ceramint.2016.01.107
- 29 Y. Wang, X. Wang, J. Shi, R. Zhu, J. Zhang, Z. Zhang, D. Ma, Y. Hou, F. Lin, J. Yang, M. Mizuno, Sci. Rep. 2016, 6 (39477), 1–13. DOI: https://doi.org/10.1038/srep39477
- 30 J. S. Boateng, D. Areago, Austin J. Anal. Pharm. Chem. 2014, 1 (5), 1–7.
- 31 M. E. Hoque, J. Mater. Sci. Eng. 2013, 2 (4), 1–5. DOI: https://doi.org/10.4172/2169-0022.1000132
- 32 K. N. Islam, M. E. Ali, M. Z. B. A. Bakar, M. Y. Loqman, A. Islam, M. S. Islam, M. M. Rahman, M. Ullah, Powder Technol. 2013, 246, 434–440. DOI: https://doi.org/10.1016/j.powtec.2013.05.046
- 33 M. A. Lopez-Heredia, A. Łapa, A. C. Mendes, L. Balcaen, S. K. Samal, F. Chai, P. Van der Voort, C. V. Stevens, B. V. Parakhonskiy, I. S. Chronakis, F. Vanhaecke, N. Blanchemain, E. Pamuła, A. G. Skirtach, T. E. L. Douglas, Mater. Lett. 2017, 190, 13–16. DOI: https://doi.org/10.1016/j.matlet.2016.12.122
- 34 A. Mohandas, P. T. S. Kumar, B. Raja, V. K. Lakshmanan, R. Jayakumar, Int. J. Nanomed- 2015, 10 (Suppl. 1), 53–66. DOI: https://doi.org/10.2147/IJN.S79981
- 35 M. A. A. Shafie, H. H. M. Fayek, J. Clin. Exp. Ophthalmol. 2013, 4 (2), 1–11. DOI: https://doi.org/10.4172/2155-9570.1000273
- 36 N. Y. Yuan, Y. A. Lin, M. H. Ho, D. M. Wang, J. Y. Lai, H. J. Hsieh, Carbohydr. Polym. 2009, 78 (2), 349–356. DOI: https://doi.org/10.1016/j.carbpol.2009.04.021
- 37 A. Pettignano, N. Tanchoux, T. Cacciaguerra, T. Vincent, L. Bernardi, E. Guibal, F. Quignard, Carbohydr. Polym. 2017, 178, 78–85. DOI: https://doi.org/10.1016/j.carbpol.2017.09.022
- 38 A. Tripathi, S. Saravanan, S. Pattnaik, A. Moorthi, N. C. Partridge, N. Selvamurugan, Int. J. Biol. Macromol. 2012, 50 (1), 294–299. DOI: https://doi.org/10.1016/j.ijbiomac.2011.11.013
- 39 S. Sánchez-Salcedo, D. Arcos, M. Vallet-Regí, Key Eng. Mater. 2008, 377, 19–42. DOI: https://doi.org/10.4028/www.scientific.net/KEM.377.19
- 40 O. Im, J. Li, M. Wang, L. G. Zhang, M. Keidar, Int. J. Nanomed. 2012, 7, 2087–2099. DOI: https://doi.org/10.2147/IJN.S29743
- 41 Q. L. Loh, C. Choong, Tissue Eng. Part B 2013, 19 (6), 485–502.
- 42 T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, Biomaterials 2012, 33 (26), 6020–6041. DOI: https://doi.org/10.1016/j.biomaterials.2012.04.050
- 43 H. Maeda, T. Kasuga, M. Nogami, J. Mater. Res. 2002, 17 (4), 727–730. DOI: https://doi.org/10.1557/JMR.2002.0104
- 44 T. Kasuga, H. Maeda, K. Kato, M. Nogami, K. I. Hata, M. Ueda, Biomaterials 2003, 24 (19), 3247–3253. DOI: https://doi.org/10.1016/s0142-9612(03)00190-x
- 45 M. Erol, A. Özyuguran, Ö. Çelebican, Chem. Eng. Technol. 2010, 33 (7), 1066–1074. DOI: https://doi.org/10.1002/ceat.200900495