Progressive Freeze Concentration for Volume Reduction of Produced Water and Biodiesel Wastewater
Corresponding Author
Shafirah Samsuri
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, Centre for Biofuel and Biochemical Research (CBBR), 32610 Seri Iskandar, Perak, Malaysia
Correspondence: Shafirah Samsuri ([email protected]), Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia.Search for more papers by this authorNor Aman Nor Rizan
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorSiew Hzien Hung
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorNurul Aini Amran
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, Centre for Biofuel and Biochemical Research (CBBR), 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorNonni Soraya Sambudi
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Shafirah Samsuri
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, Centre for Biofuel and Biochemical Research (CBBR), 32610 Seri Iskandar, Perak, Malaysia
Correspondence: Shafirah Samsuri ([email protected]), Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia.Search for more papers by this authorNor Aman Nor Rizan
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorSiew Hzien Hung
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorNurul Aini Amran
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Universiti Teknologi PETRONAS, Centre for Biofuel and Biochemical Research (CBBR), 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorNonni Soraya Sambudi
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Seri Iskandar, Perak, Malaysia
Search for more papers by this authorAbstract
One way to conserve fresh water resources is by reusing water from wastewater. For instance, water can be removed from wastewater through formation of ice crystal layers by progressive freeze concentration (PFC). The application of PFC to remove water from produced water and biodiesel wastewater was assessed through the final concentration of concentrated wastewater and purity of melted ice crystals. No PFC study has been done on these applications. In order to evaluate the efficiency of PFC, the effective partition constant (K) and separation efficiency (SE) were calculated for the effect of stirring rate and coolant temperature. The results demonstrate that PFC is a more practical method for produced water, as compared to biodiesel wastewater which is based on the value of low K and high SE.
References
- 1 H. Wang, Y.-N. Wang, X. Li, Y. Sun, H. Wu, D. Chen, Waste Manage. 2016, 56, 271–279. DOI: https://doi.org/10.1016/j.wasman.2016.07.040
- 2
J. A. Veil, M. G. Puder, D. Elcock, R. J. Redweik Jr., A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane, Argonne National Laboratory, Argonne, IL
2004.
10.2172/821666 Google Scholar
- 3 M. E. Mantell, Produced Water Reuse and Recycling Challenges and Opportunities across Major Shale Plays, Chesapeake Energy Corporation, Oklahoma City, OK 2011.
- 4 M. Berrios, R. L. Skelton, Chem. Eng. J. 2008, 144 (3), 459–465. DOI: https://doi.org/10.1016/j.cej.2008.07.019
- 5 N. M. Daud, S. R. Sheikh Abdullah, H. Abu Hasan, Process Saf. Environ. Prot. 2018, 113 (Suppl. C), 184–192. DOI: https://doi.org/10.1016/j.psep.2017.10.006
- 6 M. Maurer, W. Pronk, T. A. Larsen, Water Res. 2006, 40 (17), 3151–3166. DOI: https://doi.org/10.1016/j.watres.2006.07.012
- 7 A. A. A. Attia, Desalination 2010, 254 (1), 179–184. DOI: https://doi.org/10.1016/j.desal.2009.11.030
- 8 M. Rodríguez, S. Luque, J. Alvarez, J. Coca, Desalination 2000, 127 (1), 1–11. DOI: https://doi.org/10.1016/S0011-9164(99)00187-3
- 9 A. Zambrano, Y. Ruiz, E. Hernández, M. Raventós, F. L. Moreno, Desalination 2018, 436, 56–62. DOI: https://doi.org/10.1016/j.desal.2018.02.015
- 10 W. Gao, Y. Shao, Desalination 2009, 249 (1), 398–402. DOI: https://doi.org/10.1016/j.desal.2008.12.065
- 11 Y. Mandri, A. Rich, D. Mangin, S. Abderafi, C. Bebon, N. Semlali, J.-P. Klein, T. Bounahmidi, A. Bouhaouss, Desalination 2011, 269 (1–3), 142–147. DOI: https://doi.org/10.1016/j.desal.2010.10.053
- 12 A. C. Roos, R. J. Verschuur, B. Schreurs, R. Scholz, P. J. Jansens, Chem. Eng. Res. Des. 2003, 81 (8), 881–892. DOI: https://doi.org/10.1205/026387603322482121
- 13 R. Ruemekorf, 22nd Nat. Industrial Energy Technology Conf., Houston, TX, April 2000.
- 14
R.-Y. Qian, G. D. Botsaris, A New Freeze Concentration Process for Minimum Effluent Process in Bleached Pulp, Final Report, Tufts University, Medford, MA
2001.
10.2172/783239 Google Scholar
- 15 F. Belén, J. Sánchez, E. Hernández, J. M. Auleda, M. Raventós, J. Food Eng. 2012, 110 (3), 364–373. DOI: https://doi.org/10.1016/j.jfoodeng.2011.12.036
- 16 M. Aider, D. de Halleux, LWT – Food Sci. Technol. 2009, 42 (3), 679–685. DOI: https://doi.org/10.1016/j.lwt.2008.08.013
- 17 P. Orellana-Palma, G. Petzold, L. Pierre, J. M. Pensaben, Food Chem. Toxicol. 2017, 109, 1093–1102. DOI: https://doi.org/10.1016/j.fct.2017.03.038
- 18 S. Samsuri, N. A. Amran, N. Yahya, M. Jusoh, Chem. Eng. Commun. 2016, 203 (3), 345–363. DOI: https://doi.org/10.1080/00986445.2014.999050
- 19 O. Miyawaki, L. Liu, Y. Shirai, S. Sakashita, K. Kagitani, J. Food Eng. 2005, 69 (1), 107–113. DOI: https://doi.org/10.1016/j.jfoodeng.2004.07.016
- 20 J. S. Matthews, N. D. Coggeshall, Anal. Chem. 1959, 31 (6), 1124–1125. DOI: https://doi.org/10.1021/ac60150a610
- 21 M. Osorio, F. L. Moreno, M. Raventós, E. Hernández, Y. Ruiz, J. Food Eng. 2018, 224, 71–79. DOI: https://doi.org/10.1016/j.jfoodeng.2017.12.026
- 22
L. Liu, O. Miyawaki, K. Nakamura, Food Sci. Technol. Int. Tokyo
1997, 3 (4), 348–352.
10.3136/fsti9596t9798.3.348 Google Scholar
- 23 P. Xu, J. E. Drewes, D. Heil, G. Wang, Water Res. 2008, 42 (10), 2605–2617. DOI: https://doi.org/10.1016/j.watres.2008.01.011
- 24 O. Miyawaki, L. Liu, K. Nakamura, J. Food Sci. 1998, 63 (5), 756–758. DOI: https://doi.org/10.1111/j.1365-2621.1998.tb17893.x
- 25 C.-S. Luo, W.-W. Chen, W.-F. Han, Desalination 2010, 260 (1), 231–238. DOI: https://doi.org/10.1016/j.desal.2010.04.018
- 26
L. Liu, O. Miyawaki, K. Hayakawa, Food Sci. Technol. Res.
1999, 5 (1), 108–112. DOI: https://doi.org/10.3136/fstr.5.108
10.3136/fstr.5.108 Google Scholar
- 27 R. Halde, Water Res. 1980, 14 (6), 575–580. DOI: https://doi.org/10.1016/0043-1354(80)90115-3
- 28 E. Iritani, N. Katagiri, K. Okada, D.-Q. Cao, K. Kawasaki, Sep. Purif. Technol. 2013, 120, 445–451. DOI: https://doi.org/10.1016/j.seppur.2013.10.015
- 29 L. Otero, P. Sanz, B. Guignon, P. D. Sanz, Innovative Food Sci. Emerg. Technol. 2012, 13, 86–99. DOI: https://doi.org/10.1016/j.ifset.2011.11.003
- 30 F. L. Moreno, M. Raventós, E. Hernández, Y. Ruiz, J. Food Eng. 2014, 120, 158–166. DOI: https://doi.org/10.1016/j.jfoodeng.2013.07.034
- 31 O. Caretta, F. Courtot, T. Davies, J. Cryst. Growth 2006, 294 (2), 151–155. DOI: https://doi.org/10.1016/j.jcrysgro.2006.06.037
- 32 F. J. Eisenbart, J. Ulrich, Chem. Eng. Sci. 2015, 133, 24–29. DOI: https://doi.org/10.1016/j.ces.2014.12.060
- 33 J. Sánchez, Y. Ruiz, J. M. Auleda, E. Hernández, M. Raventós, Food Sci. Technol. Int. 2009, 15 (4), 303–315. DOI: https://doi.org/10.1177/1082013209344267