Thermo-Rheology of a Proline-Based Surface-Active Ionic Liquid: Mixtures with Water and n-Octane
María Dolores Torres
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Search for more papers by this authorRaquel Corchero
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Search for more papers by this authorIria Rodríguez-Escontrela
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Search for more papers by this authorAna Soto
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Search for more papers by this authorCorresponding Author
Ramón Moreira
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Correspondence: Ramón Moreira ([email protected]), Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain.Search for more papers by this authorMaría Dolores Torres
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Search for more papers by this authorRaquel Corchero
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Search for more papers by this authorIria Rodríguez-Escontrela
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Search for more papers by this authorAna Soto
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Search for more papers by this authorCorresponding Author
Ramón Moreira
Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
Correspondence: Ramón Moreira ([email protected]), Universidade de Santiago de Compostela, Department of Chemical Engineering, rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain.Search for more papers by this authorAbstract
Surfactant flooding is one of the most promising techniques to recover oil from unprofitable reservoirs. Surface-active ionic liquids can overcome the limitations of the current surfactants. The rheology of the injecting solutions and the formed slugs is critical in the evaluation of an enhanced oil recovery process. The thermo-rheological behavior of a biodegradable surface-active ionic liquid, [ProC4]DS, and the corresponding binary and ternary mixtures with water and n-octane was studied. All flow curves exhibited shear-thinning and thixotropic behavior. The viscoelastic behavior of the ternary samples depended strongly on the [ProC4]DS content. Three different regions were identified: typical liquid-like behavior, weak gel, and true gel. The thermal profiles indicated that the tested systems were fully thermoreversible.
Supporting Information
Filename | Description |
---|---|
ceat201800269-sup-0001-misc_information.pdf318.6 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. Sheng, Modern Chemical Enhanced Oil Recovery: Theory and Practice, Elsevier, Burlington 2010.
- 2 A. Bera, H. Belhaj, J. Mol. Liq. 2016, 224, 177–188. DOI: https://doi.org/10.1016/j.molliq.2016.09.105
- 3 I. Rodriguez-Escontrela, M. C. Puerto, C. A. Miller, A. Soto, J. Colloid Interface Sci. 2017, 504, 404–416. DOI: https://doi.org/10.1016/j.jcis.2017.05.102
- 4 S. Lago, H. Rodríguez, M. Khoshkbarchi, A. Soto, A. Arce, RSC Adv. 2012, 2, 9392–9397. DOI: https://doi.org/10.1039/C2RA21698A
- 5 R. D. Kaminsky, R. C. Wattenbarger, R. C. Szafranski, A. Coutee, in Proc. of the Int. Petrol. Technol. Conf., Dubai 2007. DOI: https://doi.org/10.2523/11200-MS
- 6 P. C. Marr, A. C. Marr, Green Chem. 2016, 18, 105–128. DOI: https://doi.org/10.1039/C5GC02277K
- 7
A. Moradi-Araghi, D. H. Beardmore, G. A. Stahl, in Water-Soluble Polymers for Petroleum Recovery (Eds: G. A. Stahl, D. N. Schulz), Springer, Boston
1988.
10.1007/978-1-4757-1985-7_19 Google Scholar
- 8 T. J. Trivedi, K. S. Rao, T. Singh, S. K. Mandal, N. Sutradhar, A. B. Panda, et al., ChemSusChem 2011, 4, 604–608. DOI: https://doi.org/10.1002/cssc.201100065
- 9 M. D. Torres, F. Chenlo, R. Moreira, J. Taiwan Inst. Chem. 2017, 71, 414–420. DOI: https://doi.org/10.1016/j.jtice.2016.11.028
- 10 P. Brown, C. P. Butts, J. Eastoe, D. Fermin, I. Grillo, H. C. Lee, et al., Langmuir 2012, 28, 2502–2509. DOI: https://doi.org/10.1021/la204557t
- 11 T. Fu, O. Carrier, D. Funfschilling, Y. Ma, H. Z. Li, Chem. Eng. Technol. 2016, 39, 987–992. DOI: https://doi.org/10.1002/ceat.201500620
- 12 C. Kliemann, M. Kleiber, K. Müller, Chem. Eng. Technol. 2018, 41, 819–826. DOI: https://doi.org/10.1002/ceat.201600413
- 13 J. G. Huddleston, A. E. Visser, M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem. 2001, 3, 156–164. DOI: https://doi.org/10.1039/B103275P
- 14 S. Chen, S. Zhang, X. Liu, J. Wang, J. Wang, K. Dong, et al., Phys. Chem. Chem. Phys. 2014, 16, 5893–5906. DOI: https://doi.org/10.1039/C3CP53116C
- 15 E. Armelin, M. Martí, E. Rudé, J. Labanda, J. Llorens, C. Alemán, Prog. Org. Coat. 2006, 57, 229–235. DOI: https://doi.org/10.1016/j.porgcoat.2006.09.002
- 16 J. A. Smith, G. B. Webber, G. G. Warr, R. Atkin, J. Phys. Chem. B 2013, 117, 13930–13935. DOI: https://doi.org/10.1021/jp407715e
- 17 F. Mallamace, C. Corsaro, N. Leone, V. Villari, N. Micalli, S. H. Chen, Sci. Rep. 2014, 4, 3747–3758. DOI: https://doi.org/10.1038/srep03747
- 18 R. Mezzenga, C. Meyer, C. Servais, A. I. Romoscanu, L. Sagalowicz, R. C. Hayward, Langmuir 2005, 21, 3322–3333. DOI: https://doi.org/10.1021/la046964b
- 19 J. Zhao, Z. N. Wang, X. L. Wei, F. Liu, W. Zhou, X. L. Tang, et al., Indian J. Chem. 2011, 50A, 641–649.
- 20 G. L. Burrell, N. F. Dunlop, F. Separovic, Soft Matter 2010, 6, 2080–2086. DOI: https://doi.org/10.1039/B916049N
- 21
D. Acierno, A. A. Collier, Rheology and Processing of Liquid Crystal Polymers, Springer, Glasgow
1996.
10.1007/978-94-009-1511-4 Google Scholar
- 22 R. P. Matthews, T. Welton, P. Hunt, Phys. Chem. Chem. Phys. 2015, 17, 14437–14453. DOI: https://doi.org/10.1039/c5cp00459d
- 23 M. Loewenberg, J. Hinch, J. Fluid Mech. 1996, 321, 395–419. DOI: https://doi.org/10.1017/S002211209600777X
- 24 Y. Hu, J. Han, L. Ge, R. Guo, Langmuir 2015, 31, 12618–12627. DOI: https://doi.org/10.1021/acs.langmuir.5b03382
- 25 X. Zhang, L. Pan, L. Wang, J. J. Zou, Chem. Eng. Sci. 2018, 180, 95–125. DOI: https://doi.org/10.1016/j.ces.2017.11.044
- 26 B. Jo, D. Banerjee, J. Heat Transfer 2015, 137, 091013–091020. DOI: https://doi.org/10.1115/1.4030226
- 27 C. L. Usma, C. S. Renamayor, I. E. Pacios, Colloids Surf., A 2016, 509, 174–181. DOI: https://doi.org/10.1016/j.colsurfa.2016.09.008
- 28 G. J. Maximo, R. J. B. N. Santos, J. A. Lopes-da-Silva, M. C. Costa, A. J. A. Meirelles, J. A. P. Coutinho, ACS Sustainable Chem. Eng. 2014, 2, 672–682. DOI: https://doi.org/10.1021/sc400365h
- 29 Z. Wang, W. Zhou, J. Solution Chem. 2009, 38, 659–668. DOI: https://doi.org/10.1007/s10953-009-9399-y
- 30 K. Prasad, M. Murakami, Y. Kaneko, A. Takada, Y. Nakamura, J. Kadokawa, Int. J. Biol. Macromol. 2009, 45, 221–225. DOI: https://doi.org/10.1016/j.ijbiomac.2009.05.004
- 31 G. S. Attard, S. Fuller, O. Howell, G. J. T. Tiddy, Langmuir 2000, 16, 8712–8718. DOI: https://doi.org/10.1021/la000296m
- 32 A. Goldszal, A. M. Jamieson Jr., J. A. Mann, J. Polak, C. Rosenblatt, J. Colloid Interface Sci. 1996, 180, 261–268. DOI: https://doi.org/10.1006/jcis.1996.0298