Catalytic Oxidation of CO over Nanocrystalline La1–xCexNiO3 Perovskite-Type Oxides
Sajjad Amini
University of Kashan, Chemical Engineering Department, Catalyst and Advanced Materials Research Laboratory, Kashan, Iran
Search for more papers by this authorCorresponding Author
Fereshteh Meshkani
University of Kashan, Chemical Engineering Department, Catalyst and Advanced Materials Research Laboratory, Kashan, Iran
Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
Correspondence: Fereshteh Meshkani ([email protected]), University of Kashan, Chemical Engineering Department, Catalyst and Advanced Materials Research Laboratory, Kashan, Iran.Search for more papers by this authorMehran Rezaei
Iran University of Science and Technology (IUST), School of Chemical, Petroleum and Gas Engineering, Tehran, Iran
Search for more papers by this authorSajjad Amini
University of Kashan, Chemical Engineering Department, Catalyst and Advanced Materials Research Laboratory, Kashan, Iran
Search for more papers by this authorCorresponding Author
Fereshteh Meshkani
University of Kashan, Chemical Engineering Department, Catalyst and Advanced Materials Research Laboratory, Kashan, Iran
Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
Correspondence: Fereshteh Meshkani ([email protected]), University of Kashan, Chemical Engineering Department, Catalyst and Advanced Materials Research Laboratory, Kashan, Iran.Search for more papers by this authorMehran Rezaei
Iran University of Science and Technology (IUST), School of Chemical, Petroleum and Gas Engineering, Tehran, Iran
Search for more papers by this authorAbstract
Nanocrystalline La1–xCexNiO3 (x = 0.1, 0.3, 0.5, 0.7, 0.9) perovskite-type oxide catalysts prepared by the Pechini method were employed in catalytic CO oxidation and the effect of substitution of La by Ce on CO conversion was evaluated. The results indicated the remarkable effect of La substitution with Ce on the catalytic performance at low temperatures. The reaction temperature had a significant influence on the stability of the catalysts. The La0.1Ce0.9NiO3 sample exhibited the highest activity among the prepared catalysts in CO oxidation reaction. In addition, the influence of different parameters including pretreatment condition, feed ratio, and gas hourly space velocity (GHSV) on the catalytic performance was examined. The optimum catalyst proved high stability under severe reaction conditions in the presence of water vapor and CO2 in the feed stream.
References
- 1 R. J. Farrauto, K. E. Voss, Appl. Catal., B 1996, 10, 29–51. DOI: https://doi.org/10.1016/0926-3373(96)00022-7
- 2 A. Tarjomannejad, A. Niaei, A. Farzi, D. Salari, P. Rashidi Zonouz, Catal. Lett. 2016, 146, 1544–1551. DOI: https://doi.org/10.1007/s10562-016-1788-4
- 3 P. Rashidi Zonouz, A. Niaei, A. Tarjomannejad, IJEST 2016, 13, 1665–1674. DOI: https://doi.org/10.1007/s13762-016-0961-z
- 4 S. Mobini, F. Meshkani, M. Rezaei, J. Environ. Chem. Eng. 2017, 5, 4906–4916. DOI: https://doi.org/10.1016/j.jece.2017.09.027
- 5 S. Mobini, F. Meshkani, M. Rezaei, Process Saf. Environ. Prot. 2017, 107, 181–189. DOI: https://doi.org/10.1016/j.psep.2017.02.009
- 6 A. Biabani, M. Rezaei, Z. Fattah, J. Nat. Gas Chem. 2012, 21, 415–420. DOI: https://doi.org/10.1016/S1003-9953(11)60384-8
- 7 A. Biabani-Ravandi, M. Rezaei, Z. Fattah, Chem. Eng. Sci. 2013, 94, 237–244. DOI: https://doi.org/10.1016/j.ces.2013.02.002
- 8 C. Tang, J. Li, X. Yao, J. Sun, Y. Cao, L. Zhang, Appl. Catal., A 2015, 494, 77–86. DOI: https://doi.org/10.1016/j.apcata.2015.01.037
- 9 S. Mobini, F. Meshkani, M. Rezaei, Chem. Eng. Sci. 2019, 197, 37–51. DOI: https://doi.org/10.1016/j.ces.2018.12.006
- 10 X. Liu, M. Liu, Y. Luo, C. Mou, S. D. Lin, H. Cheng, J. Chen, J. Lee, T. Lin, J. Am. Chem. Soc. 2012, 134, 10251–10258. DOI: https://doi.org/10.1021/ja3033235
- 11 T. S. Mozer, F. B. Passos, Int. J. Hydrogen Energy 2011, 36, 13369–13378. DOI: https://doi.org/10.1016/j.ijhydene.2011.08.011
- 12 D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev. 2014, 114, 10292–10368. DOI: https://doi.org/10.1021/cr500032a
- 13 L. Mokoena, G. Pattrick, M. S. Scurrell, Gold Bull. 2016, 49, 35–44. DOI: https://doi.org/10.1007/s13404-016-0180-x
- 14 S. A. C. Carabineiro, A. M. T. Silva, G. Drazic, P. B. Tavares, J. L. Figueiredo, Catal. Today 2010, 154, 293–302. DOI: https://doi.org/10.1016/j.cattod.2009.12.017
- 15 X. Chen, S. A. C. Carabineiro, P. B. Tavares, J. J. M. Orfao, M. F. R. Pereira, J. L. Figueiredo, J. Environ. Chem. Eng. 2014, 2, 344–355. DOI: https://doi.org/10.1016/j.jece.2014.01.003
- 16 J. Zhu, Y. Zhao, D. Tang, Z. Zhao, S. A. C. Carabineiro, J. Catal. 2016, 340, 41–48. DOI: https://doi.org/10.1016/j.jcat.2016.04.013
- 17 J. Zhang, D. Tan, Q. Meng, X. Weng, Z. Wu, Appl. Catal., B 2015, 172–173, 18–26. DOI: https://doi.org/10.1016/j.apcatb.2015.02.006
- 18 B. Izadkhah, A. Niaei, D. Salari, S. Hosseinpoor, S. A. Hosseini, A. Tarjomannejad, Korean J. Chem. Eng. 2015, 33, 1192–1199. DOI: https://doi.org/10.1007/s11814-015-0254-0
- 19 X. Yan, Q. Huang, B. Li, X. Xu, Y. Chen, S. Zhu, S. Shen, J. Ind. Eng. Chem. 2013, 19, 561–565. DOI: https://doi.org/10.1016/j.jiec.2012.09.026
- 20 H. Arandiyan, H. Dai, J. Deng, Y. Wang, S. Xie, J. Li, Chem. Commun. 2013, 49, 10748. DOI: https://doi.org/10.1039/C3CC46312E
- 21 K. Soongprasit, D. Aht-ong, V. Sricharoenchaikul, D. Atong, Key Eng. Mater. 2010, 434–435, 442. DOI: https://doi.org/10.4028/www.scientific.net/KEM.434-435.442
- 22 S. A. C. Carabineiro, N. Bogdanchikova, M. Avalos-Borja, A. Pestryakov, P. B. Tavares, J. L. Figueiredo, Nano Res. 2011, 4, 180–193. DOI: https://doi.org/10.1007/s12274-010-0068-7
- 23 S. S. Maluf, E. M. Assaf, Catal Commun. 2011, 12, 703. DOI: https://doi.org/10.1016/jcatcom.2010.12.022
- 24 Y. J. Su, K. L. Pan, M. B. Chang, Int. J. Hydrogen Energy 2014, 39, 4917–4925. DOI: https://doi.org/10.1016/j.ijhydene.2014.01.077
- 25 E. Yang, N. Y. Kim, Y. S. Noh, S. Soo, Int. J. Hydrogen Energy 2015, 40, 11831. DOI: https://doi.org/10.1016/j.ijhydene.2015.06.021
- 26 S. M. de Lima, A. M. da Silva, L. L. O. da Costa, J. M. Assaf, L. V. Mattos, R. Sarkari, A. Venugopal, F. B. Noronha, Appl. Catal., B 2012, 121, 1–9. DOI: https://doi.org/10.1016/j.apcatb.2012.03.017
- 27 Y. Cui, V. Galvita, H. Lorenz, K. Sundmacher, Appl. Catal., B 2009, 90, 29–37. DOI: https://doi.org/10.1016/j.apcatb.2009.02.006
- 28 H. Arandiyan, H. Chang, C. Liu, Y. Peng, J. Li, J. Mol. Catal. A 2013, 378, 299–306. DOI: https://doi.org/10.1016/j.molcata.2013.06.019
- 29 J. Chen, W. Shi, S. Yang, H. Arandiyan, J. Li, J. Phys. Chem. C 2011, 115, 17400–17408. DOI: https://doi.org/10.1021/jp202958b
- 30 S. I. Arockiam, A. P. P. Regis, L. J. Berchmans, Int. J. Chem. Tech. Res. 2012, 4, 798–804.
- 31 P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, G. Russo, Appl. Catal., B 2001, 29, 239–250.
- 32 B. Seyfia, M. Baghalha, H. Kazemian, Chem. Eng. J. 2009, 148, 306–311. DOI: https://doi.org/10.1016/j.cej.2008.08.041
- 33 P. Ciambelli, S. Cimino, G. Lasorella, L. Lisi, S. De Rossi, M. Faticanti, G. Minelli, P. Porta, Appl. Catal., B 2002, 37, 231–241.
- 34 K. Wang, P. Zhong, J. Serb. Chem. Soc. 2010, 75, 249–258. DOI: https://doi.org/10.2298/JSC1002249W
- 35 E. Amini, M. Rezaei, Chin. J. Catal. 2015, 36, 1711. DOI: https://doi.org/10.1016/S1872-2067(15)60922-6