Microbial Electrochemical Sensors for Anaerobic Digestion Process Control – Performance of Electroactive Biofilms under Real Conditions
Jörg Kretzschmar
DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Strasse 116, 04347 Leipzig, Germany
Search for more papers by this authorPaul Böhme
DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Strasse 116, 04347 Leipzig, Germany
Search for more papers by this authorJan Liebetrau
DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Strasse 116, 04347 Leipzig, Germany
Search for more papers by this authorMichael Mertig
Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg (KSI), Kurt-Schwabe-Strasse 4, 04720 Waldheim, Germany
Technical University Dresden, Physical Chemistry, Measurement and Sensor Technology, Eisenstuckstrasse 5, 01069 Dresden, Germany
Search for more papers by this authorCorresponding Author
Falk Harnisch
Helmholtz-Centre for Environmental Research GmbH – UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
Correspondence: Falk Harnisch ([email protected]), Helmholtz-Centre for Environmental Research GmbH – UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany.Search for more papers by this authorJörg Kretzschmar
DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Strasse 116, 04347 Leipzig, Germany
Search for more papers by this authorPaul Böhme
DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Strasse 116, 04347 Leipzig, Germany
Search for more papers by this authorJan Liebetrau
DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Strasse 116, 04347 Leipzig, Germany
Search for more papers by this authorMichael Mertig
Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg (KSI), Kurt-Schwabe-Strasse 4, 04720 Waldheim, Germany
Technical University Dresden, Physical Chemistry, Measurement and Sensor Technology, Eisenstuckstrasse 5, 01069 Dresden, Germany
Search for more papers by this authorCorresponding Author
Falk Harnisch
Helmholtz-Centre for Environmental Research GmbH – UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
Correspondence: Falk Harnisch ([email protected]), Helmholtz-Centre for Environmental Research GmbH – UFZ, Department Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany.Search for more papers by this authorAbstract
The autonomous growth of Geobacter sp.-dominated biofilms on electrodes and their sensitivity on volatile fatty acids (VFAs) allows their application as biosensor. In this study, the implementation of a microbial electrochemical sensor in the anaerobic digestion (AD) process is reported. The amperometric sensor signal follows the acetate concentration profile in the AD process. Yet, the sensor's stability is impaired by the process conditions. Therefore, potential biofilm inhibitors are individually examined, i.e., high salt and NH4+ concentrations as well as fumarate as potential alternative electron acceptor. The results show no influence of high salinity on the signal, whereas ammonia at a concentration ≥ 5 g L−1 NH4+ acts as inhibitor, and fumarate is used as substrate for current generation.
Supporting Information
Filename | Description |
---|---|
ceat201700539-sup-0001-misc_information.pdf343.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 U. Schröder, F. Harnisch, L. T. Angenent, Energy Environ. Sci. 2015, 8, 513–519. DOI: 10.1039/C4EE03359K
- 2 J. Kretzschmar, L. F. M. Rosa, J. Zosel, M. Mertig, J. Liebetrau, F. Harnisch, Chem. Eng. Technol. 2016, 39 (4), 637–642. DOI: 10.1002/ceat.201500406
- 3 J. Kretzschmar, C. Koch, J. Liebetrau, M. Mertig, F. Harnisch, Sens. Actuators, B 2017, 241, 466–472. DOI: 10.1016/j.snb.2016.10.097
- 4 A. Prévoteau, K. Rabaey, ACS Sens. 2017, 2 (8), 1072–1085. DOI: 10.1021/acssensors.7b00418
- 5 X. C. Abrevaya, N. J. Sacco, M. C. Bonetto, A. Hilding-Ohlsson, E. Cortón, Biosens. Bioelectron. 2015, 63, 580–590. DOI: 10.1016/j.bios.2014.04.034
- 6 X. C. Abrevaya, N. J. Sacco, M. C. Bonetto, A. Hilding-Ohlsson, E. Cortón, Biosens. Bioelectron. 2015, 63, 591–601. DOI: 10.1016/j.bios.2014.04.053
- 7 Z. Liu, J. Liu, S. Zhang, X.-H. Xing, Z. Su, Bioresour. Technol. 2011, 102 (22), 10221–10229. DOI: 10.1016/j.biortech.2011.08.053
- 8 X. Jin, I. Angelidaki, Y. Zhang, Environ. Sci. Technol. 2016, 50 (8), 4422–4429. DOI: 10.1021/acs.est.5b05267
- 9 A. Kaur, J. R. Kim, I. Michie, R. M. Dinsdale, A. J. Guwy, G. C. Premier, Biosens. Bioelectron. 2013, 47, 50–55. DOI: 10.1016/j.bios.2013.02.033
- 10 S. A. Patil, F. Harnisch, B. Kapadnis, U. Schröder, Biosens. Bioelectron. 2010, 26 (2), 803–808. DOI: 10.1016/j.bios.2010.06.019
- 11 R. C. Tice, Y. Kim, J. Power Sources 2014, 271, 360–365. DOI: 10.1016/j.jpowsour.2014.08.016
- 12 D. Sun, D. Call, A. Wang, S. Cheng, B. E. Logan, Environ. Microbiol. Rep. 2014, 6 (6), 723–729. DOI: 10.1111/1758-2229.12193
- 13 G. Liu, S. Yu, H. Luo, R. Zhang, S. Fu, X. Luo, Desalination 2014, 351, 77–81. DOI: 10.1016/j.desal.2014.07.026.
- 14 I. Ieropoulos, A. Gálvez, J. Greenman, Enzyme Microb. Technol. 2013, 52 (1), 32–37. DOI: 10.1016/j.enzmictec.2012.10.002.
- 15 O. Lefebvre, Z. Tan, S. Kharkwal, H. Y. Ng, Bioresour. Technol. 2012, 112, 336–340. DOI: 10.1016/j.biortech.2012.02.048
- 16 X. Wang, S. Cheng, X. Zhang, X. Li, B. E. Logan, Int. J. Hydrogen Energy 2011, 36 (21), 13900–13906. DOI: 10.1016/j.ijhydene.2011.03.052
- 17 P. Kuntke, M. Geleji, H. Bruning, G. Zeeman, H. V. M. Hamelers, C. J. N. Buisman, Bioresour. Technol. 2011, 102 (6), 4376–4382. DOI: 10.1016/j.biortech.2010.12.085
- 18 S. A. Patil, F. Harnisch, C. Koch, T. Hübschmann, I. Fetzer, A. A. Carmona-Martínez, S. Müller, U. Schröder, Bioresour. Technol. 2011, 102 (20), 9683–9690. DOI: 10.1016/j.biortech.2011.07.087
- 19 D. Sun, A. Wang, S. Cheng, M. Yates, B. E. Logan, Int. J. Syst. Evol. Microbiol. 2014, 64, 3485–3491. DOI: 10.1099/ijs.0.061598-0
- 20 H.-W. Kim, J.-Y. Nam, H.-S. Shin, J. Power Sources 2011, 196 (15), 6210–6213. DOI: 10.1016/j.jpowsour.2011.03.061
- 21 G. Yang, S. Chen, S. Zhou, Y. Liu, Stand. Genomic Sci. 2015, 10 (1), 1–10. DOI: 10.1186/s40793-015-0117-7
- 22 L. Klüpfel, A. Piepenbrock, A. Kappler, M. Sander, Nat. Geosci. 2014, 7 (3), 195–200. DOI: 10.1038/ngeo2084
- 23 E. E. Roden, A. Kappler, I. Bauer, J. Jiang, A. Paul, R. Stoesser, H. Konishi, H. Xu, Nat. Geosci. 2010, 3 (6), 417–421. DOI: 10.1038/ngeo870
- 24 A. M. Speers, G. Reguera, Appl. Environ. Microbiol. 2012, 78 (2), 437–444. DOI: 10.1128/AEM.06782-11
- 25
T. H. Yang, M. V. Coppi, D. R. Lovley, J. Sun, Microb. Cell Fact.
2010, 9 (90). DOI: 10.1186/1475-2859-9-90
10.1186/1475‐2859‐9‐90 Google Scholar
- 26 D. R. Lovley, ISME J. 2016, 11, 327–336. DOI: 10.1038/ismej.2016.136
- 27 A.-E. Rotaru, P. M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K. P. Nevin, D. R. Lovley, Energy Environ. Sci. 2014, 7 (1), 408–415. DOI: 10.1039/C3EE42189A
- 28 A.-E. Rotaru, P. M. Shrestha, F. Liu, B. Markovaite, S. Chen, K. Nevin, D. Lovley, Appl. Environ. Microbiol. 2014, 80 (15). DOI: 10.1128/AEM.00895-14
- 29
C.-D. Dube, S. R. Guiot, in Biogas Science and Technology (Eds.: G. M. Guebitz, A. Bauer, G. Bochmann, A. Gronauer, S. Weiss), Springer, Cham
2015.
10.1007/978-3-319-21993-6_4 Google Scholar
- 30 Y. Liu, F. Harnisch, K. Fricke, R. Sietmann, U. Schröder, Biosens. Bioelectron. 2008, 24 (4), 1006–1011. DOI: 10.1016/j.bios.2008.08.001
- 31 J. R. Kim, B. Min, B. E. Logan, Appl. Microbiol. Biotechnol. 2005, 68 (1), 23–30. DOI: 10.1007/s00253-004-1845-6
- 32 C. Gimkiewicz, F. Harnisch, J. Vis. Exp. 2013, 82. DOI: 10.3791/50800
- 33 Collection of Methods for Biogas (Eds: J. Liebetrau, D. Pfeiffer, D. Thrän), DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig 2016.
- 34 L. Müller, J. Kretzschmar, J. Pröter, J. Liebetrau, M. Nelles, F. Scholwin, Bioresour. Technol. 2016, 203, 267–271. DOI: 10.1016/j.biortech.2015.12.038
- 35 E. Mauky, H. F. Jacobi, J. Liebetrau, M. Nelles, Bioresour. Technol. 2015, 178, 262–269. DOI: 10.1016/j.biortech.2014.08.123
- 36 L. A. de Baere, M. Devocht, P. Van Assche, W. Verstraete, Water Res. 1984, 18 (5), 543–548. DOI: 10.1016/0043-1354(84)90201-X
- 37 B. Calli, B. Mertoglu, B. Inanc, O. Yenigun, Process Biochem. 2005, 40 (3–4), 1285–1292. DOI: 10.1016/j.procbio.2004.05.008
- 38 A. S. Galushko, B. Schink, Arch. Microbiol. 2000, 174 (5), 314–321. DOI: 10.1007/s002030000208