Affinitive Poly(vinylidene difluoride) Membranes for Enhancing Au(III) Separation with Extremely High Selectivity
Xiaomin Wang
Chinese Academy of Sciences (CAS), Key Laboratory of Green Process and Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Chinese Academy of Sciences, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Nanchang Water Industry Group, No. 99 Guanying Road, 330025 Nanchang, Jiangxi, China
These authors contributed equally to this work.
Search for more papers by this authorLei Li
Chinese Academy of Sciences (CAS), Key Laboratory of Green Process and Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Chinese Academy of Sciences, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Chuanfang Yang
Chinese Academy of Sciences (CAS), Key Laboratory of Green Process and Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Chinese Academy of Sciences, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Correspondence: Chuanfang Yang ([email protected]), Chinese Academy of Sciences (CAS), Key Laboratory of Green Process and Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China.Search for more papers by this authorXiaomin Wang
Chinese Academy of Sciences (CAS), Key Laboratory of Green Process and Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Chinese Academy of Sciences, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Nanchang Water Industry Group, No. 99 Guanying Road, 330025 Nanchang, Jiangxi, China
These authors contributed equally to this work.
Search for more papers by this authorLei Li
Chinese Academy of Sciences (CAS), Key Laboratory of Green Process and Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Chinese Academy of Sciences, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Chuanfang Yang
Chinese Academy of Sciences (CAS), Key Laboratory of Green Process and Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Chinese Academy of Sciences, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China
Correspondence: Chuanfang Yang ([email protected]), Chinese Academy of Sciences (CAS), Key Laboratory of Green Process and Engineering, Institute of Process Engineering, 1 North 2 Ave Zhongguancun, 100190 Beijing, China.Search for more papers by this authorAbstract
Thiourea-poly(vinylidene difluoride) (Th-PVDF) resin was synthesized and then cast into affinitive microporous membranes for Au(III) adsorption. The addition degree of thiourea to the resin was promoted from 22.6 % to 36.3 % when using NaOH as the catalyst. Higher addition degrees resulted in enhanced resin adsorption capacity. It also led to increased membrane hydrophilicity, higher membrane loading capacity, and membrane utilization efficiency. The membrane exhibited an extremely high selectivity toward Au(III) over other metal ions, and was easily regenerated for reuse without performance deterioration within four adsorption-regeneration cycles. X-Ray photoelectron spectroscopy (XRS) analysis and scanning electron microscopy (SEM) observation revealed that Au(III) was partially bonded to the membrane as gold chloride and partially reduced to Au(0) as gold particles.
Supporting Information
Filename | Description |
---|---|
ceat201700479-sup-0001-misc_information.pdf50.3 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 R. Wojcieszak, I. M. Cuccovia, M. A. Silva, L. M. Rossi, J. Mol. Catal. A: Chem. 2016, 422, 35–42. DOI: 10.1016/j.molcata.2016.02.008
- 2 R. Pocklanova, A. K. Rathi, M. B. Gawande, K. K. R. Datta, V. Ranc, K. Cepe, M. Petr, R. S. Varma, L. Kvitek, R. Zboril, J. Mol. Catal. A: Chem. 2016, 424, 121–127. DOI: 10.1016/j.molcata.2016.07.047
- 3 Á. Imre-Lucaci, M. Nagy, F. Imre-Lucaci, S. Fogarasi, Chem. Eng. J. 2016, 309, 655–662. DOI: 10.1016/j.cej.2016.10.045
- 4 A. D. Dwivedi, S. P. Dubey, S. Hokkanen, R. N. Fallah, M. Sillanpää, Chem. Eng. J. 2014, 255, 97–106. DOI: 10.1016/j.cej.2014.06.017
- 5 B. Pangeni, H. Paudyal, M. Abe, K. Inoue, H. Kawakita, K. Ohto, B. B. Adhikari, S. Alam, Green. Chem. 2012, 14, 1917–1927. DOI: 10.1039/C2GC35321K
- 6 R. Ghosh, J. Chromatogr. A 2002, 952, 13–27. DOI: 10.1016/S0021-9673(02)00057-2
- 7 V. Orr, L. Zhong, M. Moo-Young, C. P. Chou, Biotechnol. Adv. 2013, 31, 450–465. DOI: 10.1016/j.biotechadv.2013.01.007
- 8 X. Wang, Y. Li, H. Li, C. Yang, Carbohydr. Polym. 2016, 146, 274–281. DOI: 10.1016/j.carbpol.2016.03.055
- 9 X. J. Yang, A. G. Fane, C. Pin, Chem. Eng. J. 2002, 88, 45–51. DOI: 10.1016/S1385-8947(01)00257-1
- 10 E. Salehi, S. S. Madaeni, F. Heidary, Sep. Purif. Technol. 2012, 94, 1–8. DOI: 10.1016/j.seppur.2012.04.004
- 11 H. Li, X. Wang, L. Cao, X. Zhang, C. Yang, Chem. Eng. J. 2015, 280, 399–408. DOI: 10.1016/j.cej.2015.06.021
- 12 X. Wang, J. Xu, L. Li, H. Li, C. Yang, Chem. Eng. J. 2017, 314, 700–713. DOI: 10.1016/j.cej.2016.12.035
- 13 R. Thomas, E. Guillen-Burrieza, H. A. Arafat, J. Membr. Sci. 2014, 452, 470–480. DOI: 10.1016/j.memsci.2013.11.036
- 14 D. M. Wang, F. C. Lin, T. T. Wu, J. Y. Lai, J. Membr. Sci. 1998, 142, 191–204. DOI: 10.1016/S0376-7388(97)00322-0
- 15 I. Tsukahara, Talanta 1977, 24, 633–637. DOI: 10.1016/0039-9140(77)80108-2
- 16 J. Huang, W. L. Dai, K. N. Fan, J. Catal. 2009, 266, 228–235. DOI: 10.1016/j.jcat.2009.06.011
- 17
S. Lagergren, Handlingar
1898, 2, 15. DOI: 10.1007/BF01501332
10.1007/BF01501332 Google Scholar
- 18 Y. S. Ho, G. Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5
- 19 W. S. Wan Ngah, S. Fatinathan, J. Environ. Manage. 2010, 91, 958–969. DOI: 10.1016/j.jenvman.2009.12.003
- 20 M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, M. J. Parnian, Chem. Eng. J. 2013, 220, 237–243. DOI: 10.1016/j.cej.2013.01.021
- 21 I. Langmuir, J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004
- 22 H. M. F. Freundlich, Z. Phys. Chem. 1906, 57, 385–470. DOI: 10.1515/zpch-1907-5723
- 23 K. K. R. Tetala, D. F. Stamatialis, Sep. Purif. Technol. 2013, 104, 214–220. DOI: 10.1016/j.seppur.2012.11.022
- 24 F. Wang, Y. Lai, B. Zhao, X. Hu, D. Zhang, K. Hu, Chem. Commun. 2010, 46, 3782–3784. DOI: 10.1039/c001517b