Mathematical Model for Numerical Simulation of Organic Compound Recovery Using Membrane Separation
Corresponding Author
Rasool Pelalak
Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
Correspondence: Rasool Pelalak ([email protected]), Islamic Azad University, Young Researchers and Elite Club, Ahar Branch, Ahar, Iran.Search for more papers by this authorZahra Heidari
Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
Search for more papers by this authorHadi Soltani
Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
Search for more papers by this authorSaeed Shirazian
Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
Search for more papers by this authorCorresponding Author
Rasool Pelalak
Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
Correspondence: Rasool Pelalak ([email protected]), Islamic Azad University, Young Researchers and Elite Club, Ahar Branch, Ahar, Iran.Search for more papers by this authorZahra Heidari
Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
Search for more papers by this authorHadi Soltani
Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
Search for more papers by this authorSaeed Shirazian
Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
Search for more papers by this authorAbstract
A novel methodology in design and simulation of membrane-based purification of organic solvents is proposed. A solution of water and alcohol served as model feed. Mass transfer and momentum transfer equations were derived and solved numerically to obtain the process output as function of process parameters. Water was taken as penetrant throughout the simulations. The studied process was pervaporation in which a nonporous polymeric membrane is used for purification of ethanol. Feed inlet concentration and velocity were considered as process input, water outlet concentration and removal efficiency as output. The Maxwell-Stefan mass transfer approach was applied for estimation of diffusion, the finite element approach for numerical simulation of the process. A lower feed velocity increased the water removal efficiency.
References
- 1 I-L. Chien, in 11th International Symposium on Process Systems Engineering (Eds: I. A. Karimi, R. Srinivasan), Computer Aided Chemical Engineering, Vol. 31, Elsevier, Amsterdam 2012.
- 2 M. Ghadiri, A. Marjani, S. Shirazian, Int. J. Greenhouse Gas Control 2013, 13, 1–8.
- 3 S. M. R. Razavi, S. M. J. Razavi, T. Miri, S. Shirazian, Int. J. Greenhouse Gas Control 2013, 15, 142–149.
- 4 S. M. R. Razavi, S. Shirazian, M. S. Najafabadi, Polym. Eng. Sci. 2015, 55 (3), 598–603.
- 5 S. Shirazian, S. N. Ashrafizadeh, Solvent Extr. Ion Exch. 2010, 28 (2), 267–286.
- 6 S. Shirazian, A. Marjani, M. Rezakazemi, Eng. Comput. 2012, 28 (2), 189–198.
- 7 M. R. Sohrabi et al., Appl. Math. Modell. 2011, 35 (1), 174–188.
- 8 M. Asgarpour Khansary, A. Marjani, S. Shirazian, Chem. Eng. Res. Des. 2017, 120, 254–258.
- 9 S. M. R. Razavi, M. Rezakazemi, A. B. Albadarin, S. Shirazian, Chem. Eng. Process. 2016, 108, 27–34.
- 10 S. M. R. Razavi, S. Shirazian, M. Nazemian, Arabian J. Chem. 2016, 9 (1), 62–71.
- 11 M. Ghadiri, S. Fakhri, S. Shirazian, Polym. Eng. Sci. 2014, 54 (3), 660–666.
- 12 M. Ghadiri, M. Ghasemi Darehnaei, S. Sabbaghian, S. Shirazian, Chem. Eng. Technol. 2013, 36 (3), 507–512.
- 13 M. Ghadiri, S. Shirazian, S. N. Ashrafizadeh, Chem. Eng. Technol. 2012, 35 (12), 2177–2182.
- 14 M. A. Khansary, A. Marjani, S. Shirazian, Asia-Pac. J. Chem. Eng. 2017, 12 (4), 561–572.
- 15 M. Mohammadi et al., Polym. Eng. Sci. 2015, 55 (5), 975–980.
- 16 M. Ranjbar, S. Shirazian, S. Ghafarnejad Parto, M. Ahmadi, Chem. Eng. Technol. 2013, 36 (5), 728–732.
- 17 M. Asgarpour Khansary, A. Marjani, S. Shirazian, J. Membr. Sci. 2017, 538, 18–33.
- 18 M. Rezakazemi, A. Ghafarinazari, S. Shirazian, A. Khoshsima, Polym. Eng. Sci. 2013, 53 (6), 1272–1278.
- 19 M. Rezakazemi, M. Iravaninia, S. Shirazian, T. Mohammadi, Polym. Eng. Sci. 2013, 53 (7), 1494–1501.
- 20 A. Sadeghi, A. Hemmati, M. Ghadiri, S. Shirazian, Chem. Eng. Technol. 2017, 40 (9), 1652–1659.
- 21 S. Shirazian, S. N. Ashrafizadeh, Chem. Eng. Technol. 2013, 36 (1), 177–185.
- 22 S. Shirazian, S. Ghafarnejad Parto, S. N. Ashrafizadeh, Int. J. Appl. Ceram. Technol. 2014, 11 (5), 793–803.
- 23 S. Shirazian et al., Chem. Eng. Technol. 2012, 35 (6), 1077–1084.
- 24 S. Shirazian, M. Rezakazemi, A. Marjani, M. S. Rafivahid, Asia-Pac. J. Chem. Eng. 2012, 7 (6), 828–834.
- 25 H. Soltani et al., J. Porous Media 2016, 19 (6), 515–526.
- 26 M. Rezakazemi et al., Chem. Eng. J. 2011, 168 (1), 60–67.
- 27 J. M. Gac et al., Membr. Water Treat. 2015, 6 (5), 411–422.
- 28 E. Nagy, in Basic Equations of the Mass Transport through a Membrane Layer (Ed: E. Nagy), Elsevier, Oxford 2012.
- 29 Y. Shirazi, A. Ghadimi, T. Mohammadi, J. Appl. Polym. Sci. 2012, 124 (4), 2871–2882.
- 30 Y. Shirazi, T. Mohammadi, Sep. Sci. Technol. 2013, 48 (5), 716–727.
- 31 Y. Shirazi, M. A. Tofighy, T. Mohammadi, J. Membr. Sci. 2011, 378 (1–2), 551–561.
- 32 S. Shirazian, S. N. Ashrafizadeh, Chem. Eng. Technol. 2013, 36 (1), 177–185.
- 33 M. R. Sohrabi et al., J. Chem. Soc. Pak. 2011, 33 (4), 464–473.
- 34 F. Fadaei, S. Shirazian, S. N. Ashrafizadeh, Desalination 2011, 275 (1–3), 126–132.
- 35 F. Fadaei, S. Shirazian, S. N. Ashrafizadeh, Desalination 2011, 281 (1), 325–333.
- 36 M. Ghadiri, S. Shirazian, Chem. Eng. Process. 2013, 69, 57–62.
- 37 S. Shirazian, S. N. Ashrafizadeh, Ind. Eng. Chem. Res. 2011, 50 (4), 2245–2253.
- 38 S. Shirazian, F. Fadaei, S. N. Ashrafizadeh, Solvent Extr. Ion Exch. 2012, 30 (5), 490–506.
- 39
H. Chang et al., Membr. Water Treat.
2015, 6 (6), 415–476.
10.12989/mwt.2015.6.6.451 Google Scholar
- 40 L. Y. Ji, B. L. Shi, Q. W. Wang, Membr. Water Treat. 2014, 5 (4), 265–279.
- 41
K. Khoiruddin, A. N. Hakim, I. G. Wenten, Membr. Water Treat.
2014, 5 (2), 87–108.
10.12989/mwt.2014.5.2.087 Google Scholar
- 42 A. Marjani, S. Shirazian, Asian J. Chem. 2011, 23 (7), 3293–3294.
- 43 A. Marjani, S. Shirazian, Asian J. Chem. 2011, 23 (7), 3299–3300.
- 44 A. Marjani, S. Shirazian, Orient. J. Chem. 2012, 28 (1), 83–87.
- 45 A. Marjani, S. Shirazian, Orient. J. Chem. 2012, 28 (1), 41–46.
- 46 A. Marjani, S. Shirazian, Orient. J. Chem. 2012, 28 (1), 67–72.
- 47 A. Marjani, S. Shirazian, Orient. J. Chem. 2012, 28 (1), 23–28.
- 48 A. Marjani, S. Shirazian, Orient. J. Chem. 2012, 28 (1), 123–129.
- 49 M. R. Sohrabi et al., Asian J. Chem. 2011, 23 (1), 302–304.
- 50 M. R. Sohrabi et al., Asian J. Chem. 2011, 23 (9), 4227–4228.
- 51 M. R. Sohrabi, A. Marjani, S. Shirazian, S. Moradi, Asian J. Chem. 2011, 23 (9), 4229–4230.
- 52 R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, Hoboken, NJ 2007.
- 53 M. Fasihi, S. Shirazian, A. Marjani, M. Rezakazemi, Math. Comput. Modell. 2012, 56 (11–12), 278–286.
- 54 M. Rezakazemi, A. Ghafarinazari, S. Shirazian, A. Khoshsima, Polym. Eng. Sci. 2013, 53 (6), 1272–1278.
- 55 M. Ghadiri, M. Ghasemi Darehnaei, S. Sabbaghian, S. Shirazian, Chem. Eng. Technol. 2013, 36 (3), 507–512.
- 56 D. Albarracin Zaidiza et al., Chem. Eng. Sci. 2016, 145, 45–58.
- 57 M. Farjami, A. Moghadassi, V. Vatanpour, Chem. Eng. Process. 2015, 98, 41–51.
- 58 H. Haghshenas, M. T. Sadeghi, M. Ghadiri, Chem. Eng. Process. 2016, 102, 194–201.
- 59 S. Popović, M. Dittrich, J. Cakl, Sep. Purif. Technol. 2015, 156 (1), 28–35.
- 60 F. Vinther, A.-S. Jönsson, J. Membr. Sci. 2016, 506, 130–136.
- 61 A. Marjani, S. Shirazian, M. Ranjbar, M. Ahmadi, Orient. J. Chem. 2012, 28 (1), 13–18.
- 62 A. Moghadassi, A. Marjani, S. Shirazian, S. Moradi, Asian J. Chem. 2011, 23 (5), 1922–1924.
- 63 M. Pishnamazi, A. Marjani, S. Shirazian, M. Samipurgiri, Orient. J. Chem. 2012, 28 (1), 51–58.
- 64 M. Rezakazemi, M. Iravaninia, S. Shirazian, T. Mohammadi, Polym. Eng. Sci. 2013, 53 (7), 1494–1501.
- 65 S. Shirazian, A. Marjani, F. Azizmohammadi, Orient. J. Chem. 2011, 27 (2), 485–490.
- 66 S. Shirazian, A. Marjani, F. Fadaei, Desalination 2011, 277 (1–3), 135–140.