Issues and Current Trends of Hollow-Fiber Mixed-Matrix Membranes for CO2 Separation from N2 and CH4
Muhammad Mubashir
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Search for more papers by this authorCorresponding Author
Yeong Yin Fong
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Correspondence: Yeong Yin Fong ([email protected]), Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia.Search for more papers by this authorChew Thiam Leng
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Search for more papers by this authorLau Kok Keong
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Search for more papers by this authorMuhammad Mubashir
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Search for more papers by this authorCorresponding Author
Yeong Yin Fong
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Correspondence: Yeong Yin Fong ([email protected]), Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia.Search for more papers by this authorChew Thiam Leng
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Search for more papers by this authorLau Kok Keong
Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 32610 Perak, Malaysia
Search for more papers by this authorAbstract
To control CO2 emission from industries, membrane technology is preferred over conventional technologies due to its numerous advantages including reliability, operational simplicity, and low capital cost. Hollow-fiber mixed-matrix membranes (HFMMMs) exhibit great potential for CO2 separation. Various inorganic fillers were incorporated into different types of polymeric materials for fabrication of HFMMMs. This review focuses on the performance and issues of HFMMMS based on various materials for CO2/CH4 and CO2/N2 separation. Major features are reflected in the following three aspects: comprehensive study on the performance of HFMMMs for CO2/N2 and CO2/CH4 separation, issues with the fabrication of HFMMMs in CO2/N2 and CO2/CH4 separation, and prediction of transport models for HFMMMs in gas separation.
References
- 1Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis, Agenda 6(07), Cambridge University Press, Cambridge 2007, 333–334.
- 2 H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, J. Environ. Sci. 2008, 20 (1), 14–27.
- 3 D. Aaron, C. Tsouris, Sep. Sci. Technol. 2005, 40 (1–3), 321–348.
- 4CO2 Emissions from Fuel Combustion – Highlights, IEA Statistics, International Energy Agency, Paris 2011. https://www.iea.org/media/statistics/CO2highlights.pdf
- 5 S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, Energy Environ. Sci. 2016, 9 (6), 1863–1890.
- 6 Y. Labreche, J. Membr. Sci. Res. 2016, 2 (2), 59–65.
- 7 S. Karimi, D. Korelskiy, Y. Mortazavi, A. A. Khodadadi, K. Sardari, M. Esmaeili, O. N. Antzutkin, F. U. Shah, J. Hedlund, J. Membr. Sci. 2016, 520, 574–582.
- 8 D. Y. C. Leung, G. Caramanna, M. M. Maroto-Valer, Renewable Sustainable Energy Rev. 2014, 39, 426–443.
- 9 International Energy Outlook 2016, U. S. Energy Information Administration, Washington, D.C. 2016.
- 10 X. He, T.-J. Kim, M.-B. Hägg, J. Membr. Sci. 2014, 470, 266–274.
- 11 D. Berstad, P. Nekså, R. Anantharaman, Energy Procedia 2012, 26, 41–48.
- 12 A. A. Olajire, Energy 2010, 35 (6), 2610–2628.
- 13 C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air Qual. Res. 2012, 12, 745–769.
- 14 Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, S.-P. Chai, J. Nat. Gas Chem. 2012, 21 (3), 282–298.
- 15 D. Dortmundt, K. Doshi, Recent Developments in CO2 Removal Membrane Technology, UOP LLC, Des Plaines, IL 1999.
- 16 N. Kosinov, J. Gascon, F. Kapteijn, E. J. M. Hensen, J. Membr. Sci. 2016, 499, 65–79.
- 17
S. E. Kentish, C. A. Scholes, G. W. Stevens, Recent Pat. Chem. Eng.
2008, 1 (1), 52–66.
10.2174/2211334710801010052 Google Scholar
- 18 H. A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D. F. Mohshim, A. Mushtaq, Chem. Eng. Technol. 2013, 36 (11), 1838–1846.
- 19 B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, Chem. Soc. Rev. 2015, 44 (8), 2421–2454.
- 20 M. Pera-Titus, Chem. Rev. 2014, 114 (2), 1413–1492.
- 21 M. U. M. Junaidi, C. P. Leo, A. L. Ahmad, N. A. Ahmad, Microporous Mesoporous Mater. 2015, 206, 23–33.
- 22
K. Scott, Handbook of Industrial Membranes, Elsevier, New York
1995.
10.1016/B978-185617233-2/50006-4 Google Scholar
- 23 H. Lin, Z. He, Z. Sun, J. Kniep, A. Ng, R. W. Baker, J. Membr. Sci. 2015, 493, 794–806.
- 24 L. S. White, X. Wei, S. Pande, T. Wu, T. C. Merkel, J. Membr. Sci. 2015, 496, 48–57.
- 25 P. Pandey, R. S. Chauhan, Prog. Polym. Sci. 2001, 26 (6), 853–893.
- 26 M. C. Porter, Handbook of Industrial Membrane Technology, Noyes Publications, Park Ridge, NJ 1989.
- 27 M. Muhammad, Y. F. Yeong, K. K. Lau, A. B. Mohd Shariff, Sep. Purif. Rev. 2015, 44 (4), 331–340.
- 28 M. Mubashir, Y. Y. Fong, L. K. Keong, M. A. B. Sharrif, AIChE J. 2015, 2, 48–57.
- 29 B. K. Sea, K. Kusakabe, S. Morooka, J. Membr. Sci. 1997, 130 (1), 41–52.
- 30 K. Kusakabe, S. Sakamoto, T. Saie, S. Morooka, Sep. Purif. Technol. 1999, 16 (2), 139–146.
- 31 Y.-S. Kim, K. Kusakabe, S. Morooka, S.-M. Yang, Korean J. Chem. Eng. 2001, 18 (1), 106–112.
- 32 R. M. de Vos, H. Verweij, J. Membr. Sci. 1998, 143 (1–2), 37–51.
- 33 R. M. de Vos, W. F. Maier, H. Verweij, J. Membr. Sci. 1999, 158 (1–2), 277–288.
- 34 J.-I. Hayashi, M. Yamamoto, K. Kusakabe, S. Morooka, Ind. Eng. Chem. Res. 1997, 36 (6), 2134–2140.
- 35 M. Yamamoto, K. Kusakabe, J.-I. Hayashi, S. Morooka, J. Membr. Sci. 1997, 133 (2), 195–205.
- 36 M. C. Lovallo, A. Gouzinis, M. Tsapatsis, AIChE J. 1998, 44 (8), 1903–1913.
- 37 Y. Cui, H. Kita, K.-I. Okamoto, J. Membr. Sci. 2004, 236 (1–2), 17–27.
- 38 M. Mirfendereski, M. Sadrzadeh, T. Mohammadi, Int. J. Greenhouse Gas Control 2008, 2 (4), 531–538.
- 39 T. L. Chew, A. L. Ahmad, S. Bhatia, Chem. Eng. J. 2011, 171 (3), 1053–1059.
- 40 S. R. Venna, M. A. Carreon, Langmuir 2011, 27 (6), 2888–2894.
- 41 J. van den Bergh, W. Zhu, F. Kapteijn, J. Moulijn, K. Yajima, K. Nakayama, Res. Chem. Intermed. 2008, 34 (5), 467–474.
- 42 A. F. Ismail, D. Rana, T. Matsuura, H. C. Foley, Carbon-based Membranes for Separation Processes, Springer, New York 2011.
- 43 V. V. Namboodiri, L. M. Vane, J. Membr. Sci. 2007, 306 (1–2), 209–215.
- 44 A. F. Ismail, S. J. Shilton, I. R. Dunkin, S. L. Gallivan, J. Membr. Sci. 1997, 126 (1), 133–137.
- 45 T. Visser, N. Masetto, M. Wessling, J. Membr. Sci. 2007, 306 (1–2), 16–28.
- 46 K.-J. Kim, S.-H. Park, W.-W. So, D.-J. Ahn, S.-J. Moon, J. Membr. Sci. 2003, 211 (1), 41–49.
- 47 J. K. Adewole, A. L. Ahmad, A. S. Sultan, S. Ismail, C. P. Leo, J. Polym. Res. 2015, 22 (3), 32.
- 48 X. Y. Chen, H. V. Thang, A. A. Ramirez, D. Rodrigue, S. Kaliaguine, RSC Adv. 2015, 5, 24399–24448.
- 49 P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, M. Aziz, Sep. Purif. Technol. 2011, 81 (3), 243–264.
- 50 R. W. Baker, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York 2000.
- 51 J. K. Ward, W. J. Koros, J. Membr. Sci. 2011, 377 (1–2), 75–81.
- 52 D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 2003, 211 (2), 311–334.
- 53 S. Kim, E. Marand, Microporous Mesoporous Mater. 2008, 114 (1–3), 129–136.
- 54 Y. Li, T. S. Chung, S. Kulprathipanja, AIChE J. 2007, 53 (3), 610–616.
- 55 Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, Energy Environ. Sci. 2012, 5 (8), 8359–8369.
- 56 B. Zornoza, A. Martinez-Joaristi, P. Serra-Crespo, C. Tellez, J. Coronas, J. Gascon, Chem. Commun. 2011, 47 (33), 9522–9524.
- 57 T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, S. Nair, Angew. Chem., Int. Ed. 2010, 49 (51), 9863–9866.
- 58 Y. Li, T.-S. Chung, Z. Huang, S. Kulprathipanja, J. Membr. Sci. 2006, 277 (1–2), 28–37.
- 59 S. Husain, W. J. Koros, J. Membr. Sci. 2007, 288 (1–2), 195–207.
- 60 A. F. Barquin, C. C. Coterillo, M. E. Benavides, J. Zuniga, A. Irabien, Chem. Eng. Technol. 2017, 40, 997–1007.
- 61 Y. Dai, J. R. Johnson, O. Karvan, D. S. Sholl, W. J. Koros, J. Membr. Sci. 2012, 401–402, 76–82.
- 62 P. D. Sutrisna, J. Hou, H. Li, Y. Zhang, V. Chen, J. Membr. Sci. 2017, 524, 266–279.
- 63 H. Zhu, X. Jie, Y. Cao, J. Chem., in press. DOI: 10.1155/2017/2548957
- 64 K.-S. Jang, H.-J. Kim, J. R. Johnson, W.-G. Kim, W. J. Koros, C. W. Jones, Chem. Mater. 2011, 23 (12), 3025–3028.
- 65 H. I. Mahon, US Patent , 1966. 3,228,876
- 66 J. Caro, Curr. Opin. Chem. Eng. 2011, 1 (1), 77–83.
- 67 C. R. Kim, T. Uemura, S. Kitagawa, Chem. Soc. Rev. 2016, 45 (14), 3828–3845.
- 68 H. B. Jeazet, T. Koschine, C. Staudt, K. Raetzke, C. Janiak, Membranes 2013, 3 (4), 331–353.
- 69 X. Y. Chen, V.-T. Hoang, D. Rodrigue, S. Kaliaguine, RSC Adv. 2013, 3 (46), 24266–24279.
- 70 V. M. Magueijo, L. G. Anderson, A. J. Fletcher, S. J. Shilton, Chem. Eng. Sci. 2013, 92, 13–20.
- 71 E. P. Favvas, K. L. Stefanopoulos, J. W. Nolan, S. K. Papageorgiou, A. C. Mitropoulos, D. Lairez, Sep. Purif. Technol. 2014, 132, 336–345.
- 72 S. Nair, J. Kwang-Suk, C. Jones, W. Koros, J. Johnson, US Patent , 2013. 8,568,517
- 73 M. F. A. Wahab, A. F. Ismail, S. J. Shilton, Sep. Purif. Technol. 2012, 86, 41–48.
- 74 J. Hu, H. Cai, H. Ren, Y. Wei, Z. Xu, H. Liu, Ind. Eng. Chem. Res. 2010, 49 (24), 12605–12612.
- 75 Y. Mao, J. Li, W. Cao, Y. Ying, L. Sun, X. Peng, ACS Appl. Mater. Interfaces 2014, 6 (6), 4473–4479.
- 76 W. Li, G. Zhang, C. Zhang, Q. Meng, Z. Fan, C. Gao, Chem Commun. 2015, 50 (24), 3214–3216.
- 77 S. Husain, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA 2006.
- 78 A. F. Ismail, T. D. Kusworo, A. Mustafa, J. Membr. Sci. 2008, 319 (1–2), 306–312.
- 79 A. Idris, Z. Man, A. S. Maulud, F. Uddin, Can. J. Chem. Eng. 2017, 95 (12), 2398–2409.
- 80 E. P. Favvas, G. C. Kapantaidakis, J. W. Nolan, A. C. Mitropoulos, N. K. Kanellopoulos, J. Mater. Process. Technol. 2007, 186 (1–3), 1021–110.
- 81 V. Bhardwaj, A. Macintosh, I. Sharpe, S. Gordeyev, S. Shilton, Ann. N. Y. Acad. Sci. 2003, 984 (1), 3181–328.
- 82 R. Amaral, N. J. Mermier, A. Habert, C. Borges, Sep. Sci. Technol. 2016, 51 (5), 853–861.
- 83 K. Zahri, K. Wong, P. Goh, A. Ismail, RSC Adv. 2016, 6 (92), 89131–89139.
- 84 Y. Zhang, Q. Shen, J. Hou, P. D. Sutrisna, V. Chen, J. Mater. Chem. A 2017, 5, 7732–7737.
- 85 A. K. Zulhairun, B. C. Ng, A. F. Ismail, R. Surya Murali, M. S. Abdullah, Sep. Purif. Technol. 2014, 137, 1–12.
- 86 A. Jamil, O. P. Ching, A. M. Shariff, Appl. Clay Sci. 2017, 143, 115–124.
- 87 A. K. Zulhairun, M. N. Subramaniam, A. Samavati, M. K. N. Ramli, M. Krishparao, P. S. Goh, Sep. Purif. Technol. 2017, 180, 13–22.
- 88 B. Haley, E. Frenkel, Urol. Oncol.: Semin. Orig. Invest. 2008, 26 (1), 57–64.
- 89 N. Sinha, J. Ma, J. T. Yeow, J. Nanosci. Nanotechnol. 2006, 6 (3), 573–590.
- 90 J. Bernholc, D. Brenner, M. Buongiorno Nardelli, V. Meunier, C. Roland, Annu. Rev. Mater. Res. 2002, 32 (1), 347–375.
- 91 J. Hone, Dekker Encycl. Nanosci. Nanotechnol. 2004, 6, 603–610.
- 92 H. Zhang, Y. A. Alhamed, W. Chu, Z. Ye, A. Alzahrani, L. Petrov, Appl. Catal., A 2013, 464–465, 156–614.
- 93 A. Sayari, Y. Yang, M. Kruk, M. Jaroniec, J. Phys. Chem. B 1999, 103 (18), 3651–3658.
- 94 L. Ejenstam, A. Swerin, P. M. Claesson, J. Dispersion Sci. Technol. 2016, 37 (9), 1375–1383.
- 95 S. M. Gupta, M. Tripathi, Chin. Sci. Bull. 2011, 56 (16), 1639–1657.
- 96 C. V. Funk, D. R. Lloyd, J. Membr. Sci. 2008, 313 (1–2), 224–231.
- 97 F. Uddin, Metall. Mater. Trans. A 2008, 39 (12), 2804–2814.
- 98 N. Jusoh, Y. F. Yeong, T. L. Chew, K. K. Lau, A. M. Shariff, Sep. Purif. Rev. 2016, 45 (4), 321–344.
- 99 L. Y. Jiang, T. S. Chung, S. Kulprathipanja, AIChE J. 2006, 52 (8), 2898–2908.
- 100 W. Li, Z. Yang, G. Zhang, Z. Fan, Q. Meng, C. Shen, J. Mater Chem. A 2014, 2 (7), 2110–2118.
- 101 A. K. Zulhairun, Z. G. Fachrurrazi, M. Nur Izwanne, A. F. Ismail, Sep. Purif. Technol. 2015, 146, 85–93.
- 102 F. Cacho-Bailo, S. Catalán-Aguirre, M. Etxeberría-Benavides, O. Karvan, V. Sebastian, C. Téllez, J. Membr. Sci. 2015, 476, 277–285.
- 103 F. Cacho-Bailo, G. Caro, M. Etxeberria-Benavides, O. Karvan, C. Tellez, J. Coronas, RSC Adv. 2016, 6 (7), 5881–5889.
- 104 A. J. Brown, J. R. Johnson, M. E. Lydon, W. J. Koros, C. W. Jones, S. Nair, Angew. Chem., Int. Ed. 2012, 51 (42), 10615–10618.
- 105 H. Zhu, X. Jie, L. Wang, G. Kang, D. Liu, Y. Cao, RSC Adv. 2016, 6 (73), 69124–69134.
- 106 H. Zhu, X. Jie, L. Wang, D. Liu, Y. Cao, J. Appl. Polym. Sci. 2017, 134, 44999–45009.
- 107 W. Li, P. Su, G. Zhang, C. Shen, Q. Meng, J. Membr. Sci. 2015, 495, 384–391.
- 108 X. Y. Chen, H. Vinh-Thang, D. Rodrigue, S. Kaliaguine, Ind. Eng. Chem. Res. 2012, 51 (19), 6895–6906.
- 109 L. Y. Jiang, T. S. Chung, C. Cao, Z. Huang, S. Kulprathipanja, J. Membr. Sci. 2005, 252, 89–100.
- 110 A. Erdem-şenatalar, M. Tatlier, Ş. B. Tantekin-Ersolmaz, Chem. Eng. Commun. 2003, 190 (5–8), 677–692.
- 111 E. E. Gonzo, M. L. Parentis, J. C. Gottifredi, J. Membr. Sci. 2006, 277 (1–2), 46–54.
- 112 M. A. Aroon, A. F. Ismail, T. Matsuura, M. M. Montazer-Rahmati, Sep. Purif. Technol. 2010, 75 (3), 229–242.
- 113 R. H. B. Bouma, A. Checchetti, G. Chidichimo, E. Drioli, J. Membr. Sci. 1997, 128 (2), 141–149.
- 114 Y. Li, H.-M. Guan, T.-S. Chung, S. Kulprathipanja, J. Membr. Sci. 2006, 275 (1–2), 17–28.
- 115 A. V. Goncharenko, Phys. Rev. E 2003, 68 (4), 041108.
- 116 T. Lewis, L. Nielsen, J. Appl. Polym. Sci. 1970, 14 (6), 1449–1471.
- 117 R. Pal, J. Reinf. Plast. Compos. 2007, 26 (7), 643–651.
- 118 B. Shimekit, H. Mukhtar, T. Murugesan, J. Membr. Sci. 2011, 373 (1–2), 152–159.
- 119 R. Mahajan, W. J. Koros, Polym. Eng. Sci. 2002, 42, 1420–1431.
- 120 R. Mahajan, W. J. Koros, Polym. Eng. Sci. 2002, 42, 1432–1441.
- 121 H. V. Thang, S. Kaliaguine, Chem Rev. 2013, 113, 4980–5028.
- 122 D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 2003, 211, 311–334.
- 123 J. Felske, Int. J. Heat Mass Transfer 2004, 47 (14), 3453–3461.
- 124 E. Cussler, J. Membr. Sci. 1990, 52 (3), 275–288.