Investigation into Ethanol Purification Using Polymeric Membranes and a Pervaporation Process
Corresponding Author
Nahid Raoufi
Islamic Azad University, Department of Chemical Engineering, South Tehran Branch, Tehran, Iran
Correspondence: Nahid Raoufi ([email protected]), Department of Chemical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.Search for more papers by this authorMehdi Asadollahzadeh
Islamic Azad University, Department of Chemical Engineering, South Tehran Branch, Tehran, Iran
Search for more papers by this authorSaeed Shirazian
University of Limerick, Department of Chemical Sciences, Bernal Institute, Limerick, Ireland
Search for more papers by this authorCorresponding Author
Nahid Raoufi
Islamic Azad University, Department of Chemical Engineering, South Tehran Branch, Tehran, Iran
Correspondence: Nahid Raoufi ([email protected]), Department of Chemical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.Search for more papers by this authorMehdi Asadollahzadeh
Islamic Azad University, Department of Chemical Engineering, South Tehran Branch, Tehran, Iran
Search for more papers by this authorSaeed Shirazian
University of Limerick, Department of Chemical Sciences, Bernal Institute, Limerick, Ireland
Search for more papers by this authorAbstract
A comprehensive computational fluid dynamics simulation was developed for the rational design of a bioethanol purification system using a pervaporation process by tailoring the hydrodynamics of the process. The process involves the removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments comprising the feed and the membrane. To describe water transport in the feed solution, the Maxwell-Stefan approach was used, whereas for mass transfer inside the membrane the molecular diffusion mechanism was adopted. The governing equations were solved numerically by using a finite element method. The model was capable of predicting mass transfer along with momentum transfer in the feed and membrane compartments.
References
- 1 I. L. Chien, Computer-Aided Chemical Engineering (Eds: A. K. Iftekhar, S. Rajagopalan), Elsevier, 2012, 75–82.
- 2 M. Rezakazemi, K. Shahidi, T. Mohammadi, Desalin. Water Treat. 2015, 54 (6), 1542–1549. DOI: 10.1080/19443994.2014.887036
- 3 B. Baheri, M. Shahverdi, M. Rezakazemi, E. Motaee, T. Mohammadi, Chem. Eng. Commun. 2015, 202 (3), 316–321. DOI: 10.1080/00986445.2013.841149
- 4 M. Rezakazemi, S. Razavi, T. Mohammadi, A. G. Nazari, J. Membr. Sci. 2011, 379 (1–2), 224–232. DOI: 10.1016/j.memsci.2011.05.070
- 5 M. Shahverdi, B. Baheri, M. Rezakazemi, E. Motaee, T. Mohammadi, Polym. Eng. Sci. 2013, 53 (7), 1487–1493. DOI: 10.1002/pen.23406
- 6 M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, T. Matsuura, Prog. Polym. Sci. 2014, 39 (5), 817–861. DOI: 10.1016/j.progpolymsci.2014.01.003
- 7 A. Marjani, M. Rezakazemi, S. Shirazian, Orient. J. Chem. 2012, 28, 145–151.
- 8 J. J. Torres, J. T. Arana, N. A. Ochoa, J. Marchese, C. Pagliero, Chem. Eng. Technol. 2017, in press. DOI: 10.1002/ceat.201600257
- 9 M. Rezakazemi, K. Shahidi, T. Mohammadi, Int. J. Hydrogen Energy 2012, 37 (19), 14576–14589. DOI: 10.1016/j.ijhydene.2012.06.104
- 10 M. Rezakazemi, K. Shahidi, T. Mohammadi, Int. J. Hydrogen Energy 2012, 37 (22), 17275–17284. DOI: 10.1016/j.ijhydene.2012.08.109
- 11 M. Rezakazemi, I. Heydari, Z. Zhang, J. CO2 Util. 2017, 18, 362–369. DOI: 10.1016/j.jcou.2017.02.006
- 12 M. Rezakazemi, A. Vatani, T. Mohammadi, J. Nat. Gas Sci. Eng. 2016, 30, 10–18. DOI: 10.1016/j.jngse.2016.01.033
- 13 A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, ChemBioEng Rev. 2017, 4 (1), 37–59. DOI: 10.1002/cben.201600010
- 14
E. Nagy, Basic Equations of the Mass Transport through a Membrane Layer (Ed: E. Nagy), Elsevier, Oxford, 2012, 267–291.
10.1016/B978-0-12-416025-5.00011-9 Google Scholar
- 15 M. Rezakazemi, A. Vatani, T. Mohammadi, RSC Adv. 2015, 5 (100), 82460–82470. DOI: 10.1039/C5RA13609A
- 16
M. Rezakazemi, M. Sadrzadeh, T. Mohammadi, T. Matsuura, Organic-Inorganic Composite Polymer Electrolyte Membranes: Preparation, Properties, and Fuel Cell Applications (Eds: D. Inamuddin, A. Mohammad, A. M. Asiri), Springer International Publishing, Cham, 2017, 311–325.
10.1007/978-3-319-52739-0_11 Google Scholar
- 17 M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, Int. J. Hydrogen Energy 2017, 42 (22), 15211–15225. DOI: 10.1016/j.ijhydene.2017.04.044
- 18 M. Rezakazemi, T. Mohammadi, Int. J. Hydrogen Energy 2013, 38 (32), 14035–14041. DOI: 10.1016/j.ijhydene.2013.08.062
- 19 M. Rostamizadeh, M. Rezakazemi, K. Shahidi, T. Mohammadi, Int. J. Hydrogen Energy 2013, 38 (2), 1128–1135. DOI: 10.1016/j.ijhydene.2012.10.069
- 20 M. Al-Marzouqi, M. El-Naas, S. Marzouk, N. Abdullatif, Sep. Purif. Technol. 2008, 62 (3), 499–506. DOI: 10.1016/j.seppur.2008.02.009
- 21 M. H. Al-Marzouqi, M. H. El-Naas, S. A. M. Marzouk, M. A. Al-Zarooni, N. Abdullatif, R. Faiz, Sep. Purif. Technol. 2008, 59 (3), 286–293. DOI: 10.1016/j.seppur.2007.06.020
- 22 M. Rezakazemi, M. Shahverdi, S. Shirazian, T. Mohammadi, A. Pak, Chem. Eng. J. 2011, 168 (1), 60–67.
- 23 S. Shirazian, S. N. Ashrafizadeh, Chem. Eng. Technol. 2013, 36 (1), 177–185.
- 24 R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Revised 2nd ed., Wiley, 2007.
- 25 S. Shirazian, M. Rezakazemi, A. Marjani, M. S. Rafivahid, Asia-Pac. J. Chem. Eng. 2012, 7 (6), 828–834. DOI: 10.1002/apj.641
- 26 S. Shirazian, M. Pishnamazi, M. Rezakazemi, A. Nouri, M. Jafari, S. Noroozi, A. Marjani, Chem. Eng. Technol. 2012, 35 (6), 1077–1084. DOI: 10.1002/ceat.201100397
- 27 S. M. R. Razavi, M. Rezakazemi, A. B. Albadarin, S. Shirazian, Chem. Eng. Process. 2016, 108, 27–34. DOI: 10.1016/j.cep.2016.07.001
- 28 M. Rezakazemi, Z. Niazi, M. Mirfendereski, S. Shirazian, T. Mohammadi, A. Pak, Chem. Eng. J. 2011, 168 (3), 1217–1226. DOI: 10.1016/j.cej.2011.02.019
- 29 S. Shirazian, M. Rezakazemi, A. Marjani, S. Moradi, Desalination 2012, 286 (0), 290–295. DOI: 10.1016/j.desal.2011.11.039
- 30 F. Hashemi, S. Rowshanzamir, M. Rezakazemi, Mathematical and Computer Modelling 2012, 55 (3–4), 1540–1557. DOI: 10.1016/j.mcm.2011.10.047
- 31 M. Rezakazemi, M. Iravaninia, S. Shirazian, T. Mohammadi, Polym. Eng. Sci. 2013, 53 (7), 1494–1501. DOI: 10.1002/pen.23410
- 32 M. Fasihi, S. Shirazian, A. Marjani, M. Rezakazemi, Math. Comput. Model. 2012, 56 (11–12), 278–286.
- 33 S. Shirazian, A. Marjani, M. Rezakazemi, Eng. Comput. 2012, 28 (2), 189–198.
- 34 M. Rezakazemi, A. Ghafarinazari, S. Shirazian, A. Khoshsima, Polym. Eng. Sci. 2013, 53 (6), 1272–1278.
- 35 E. Farno, M. Rezakazemi, T. Mohammadi, N. Kasiri, Polym. Eng. Sci. 2014, 54 (1), 215–226. DOI: 10.1002/pen.23555
- 36 U. Shavit, G. Bar-Yosef, R. Rosenzweig, S. Assouline, Water Resour. Res. 2002, 38 (12), 1320–1334.
- 37 U. Shavit, R. Rosenzweig, S. Assouline, Transp. Porous Media 2004, 54 (3), 345–360. DOI: 10.1023/b:tipm.0000003623.55005.97
- 38 N. S. Abdullah, D. B. Das, H. Ye, Z. F. Cui, Int. J. Artif. Organs 2006, 29, 841–851.
- 39 H. Ye, D. B. Das, J. T. Triffitt, Z. Cui, J. Membr. Sci. 2006, 272 (1–2), 169–178. DOI: 10.1016/j.memsci.2005.07.040
- 40 N. S. Abdullah, D. B. Das, Chem. Eng. Sci. 2007, 62 (21), 5821–5839. DOI: 10.1016/j.ces.2007.06.024
- 41 M. Rezakazemi, S. Shirazian, S. N. Ashrafizadeh, Desalination 2012, 285 (0), 383–392. DOI: 10.1016/j.desal.2011.10.030
- 42 A. Muhammad, M. Younas, M. Rezakazemi, Chem. Eng. Res. Des. 2017, 127 (Supplement C), 52–61. DOI: 10.1016/j.cherd.2017.09.007
- 43 M. R. Sohrabi, A. Marjani, S. Moradi, M. Davallo, S. Shirazian, Appl. Math.l Model. 2011, 35 (1), 174–188.