Natural Calcium-Based Residues for Carbon Dioxide Capture in a Bubbling Fluidized-Bed Reactor
Nattha Chalermwat
Chulalongkorn University, Department of Chemical Technology, Faculty of Science, Patumwan, 10330 Bangkok, Thailand
Search for more papers by this authorRujee Rattanaprapanporn
Chulalongkorn University, Department of Chemical Technology, Faculty of Science, Patumwan, 10330 Bangkok, Thailand
Search for more papers by this authorBenjapon Chalermsinsuwan
Chulalongkorn University, Department of Chemical Technology, Faculty of Science, Patumwan, 10330 Bangkok, Thailand
Chulalongkorn University, Center of Excellence on Petrochemical and Material Technology, Patumwan, 10330 Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Sirilux Poompradub
Chulalongkorn University, Department of Chemical Technology, Faculty of Science, Patumwan, 10330 Bangkok, Thailand
Chulalongkorn University, Center of Excellence on Petrochemical and Material Technology, Patumwan, 10330 Bangkok, Thailand
Correspondence: Sirilux Poompradub ([email protected]), Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand.Search for more papers by this authorNattha Chalermwat
Chulalongkorn University, Department of Chemical Technology, Faculty of Science, Patumwan, 10330 Bangkok, Thailand
Search for more papers by this authorRujee Rattanaprapanporn
Chulalongkorn University, Department of Chemical Technology, Faculty of Science, Patumwan, 10330 Bangkok, Thailand
Search for more papers by this authorBenjapon Chalermsinsuwan
Chulalongkorn University, Department of Chemical Technology, Faculty of Science, Patumwan, 10330 Bangkok, Thailand
Chulalongkorn University, Center of Excellence on Petrochemical and Material Technology, Patumwan, 10330 Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Sirilux Poompradub
Chulalongkorn University, Department of Chemical Technology, Faculty of Science, Patumwan, 10330 Bangkok, Thailand
Chulalongkorn University, Center of Excellence on Petrochemical and Material Technology, Patumwan, 10330 Bangkok, Thailand
Correspondence: Sirilux Poompradub ([email protected]), Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand.Search for more papers by this authorAbstract
Used clamshells (Paphia undulata), as a precursor of calcium oxide (CaO) sorbents, were employed for carbon dioxide (CO2) adsorption in a bubbling fluidized-bed reactor. To find the optimal calcination conditions, a 2k experimental design was used to vary the ground clamshell particle size, heating rate, and calcination time at 950 °C under a nitrogen atmosphere. The heating rate was the most significant factor affecting the CO2 adsorption capacity of the obtained CaO sorbent. The maximum CO2 adsorption capacity of the CaO obtained under these study conditions was higher than that of commercial CaO.
References
- 1 R. de Richter, S. Caillol, J. Photochem. Photobiol., C. 2011, 12, 1–19.
- 2The National Oceanic and Atmospheric Administration, Trends in Atmospheric Carbon Dioxide, NOAA Earth System Research Laboratory, Boulder, CO, USA, 2006, http://www.esrl.noaa.gov/gmd/ccgg/trends
- 3
S. A. Abdul-Wahab, Y. Charabi, R. Al-Maamari, G. A. Al-Rawas, A. Gastli, K. Chan, Renewable Sustainable Energy Rev.
2015, 52, 1702–1712.
10.1016/j.rser.2015.07.193 Google Scholar
- 4International Energy Agency, CO2 Emissions from Fuel Combustion (2014), Paris, France.
- 5 K. Warmuzinski, M. Tanczyk, M. Jaschik, Int. J. Greenhouse Gas Control 2015, 37, 182–190.
- 6 T. Zhou, L. Luo, S. Hu, S. Wang, R. Zhang, H. Wu, Z. Jiang, B. Wang, J. Yang, J. Membr. Sci. 2015, 489, 1–10.
- 7 B. Belaissaoui, D. Willson, E. Favre, Chem. Eng. J. 2012, 211–212, 122–132.
- 8 S. M. Mahurin, J. S. Lee, X. Wang, S. Dai, J. Membr. Sci. 2011, 368, 41–47.
- 9 C. Song, Y. Kitamura, S. Li, Energy 2014, 65, 580–589.
- 10 M. J. Jensen, C. S. Russell, D. Bergeson, C. D. Hoeger, D. J. Frankman, C. S. Bence, L. L. Baxter, Int. J. Greenhouse Gas Control 2015, 42, 200–212.
- 11 C. F. Song, Y. Kitamura, S. H. Li, W. Z. Jiang, Int. J. Greenhouse Gas Control 2013, 13, 26–33.
- 12 M. J. Tuinier, M. van Sint Annaland, J. A. M. Kuipers, Int. J. Greenhouse Gas Control 2011, 5, 694–701.
- 13 M. K. Wong, M. A. Bustam, A. M. Shariff, Int. J. Greenhouse Gas Control 2015, 39, 139–147.
- 14 C. H. Yu, H. H. Cheng, C. S. Tan, Int. J. Greenhouse Gas Control 2012, 9, 136–147.
- 15 S. A. Freeman, R. Dugas, D. H. V. Wagener, T. Nguyen, G. T. Rochelle, Int. J. Greenhouse Gas Control 2010, 4, 119–124.
- 16
K. H. Smith, C. J. Anderson, W. Tao, K. Endo, K. A. Mumford, S. E. Kentish, A. Qader, B. Hooper, G. W. Stevens, Int. J. Greenhouse Gas Control
2012, 10, 64–73.
10.1016/j.ijggc.2012.05.018 Google Scholar
- 17 S. Y. Lee, S. J. Park, J. Ind. Eng. Chem. 2015, 23, 1–11.
- 18 L. Vieille, A. Govin, P. Grosseau, Powder Technol. 2012, 228, 319–323.
- 19 M. G. Plaza, S. García, F. Rubiera, J. J. Pis, C. Pevida, Chem. Eng. J. 2010, 163, 41–47.
- 20 C. Chen, D. W. Park, W. S. Ahn, Appl. Surf. Sci. 2014, 292, 63–67.
- 21 Y. E. Kim, J. H. Park, S. H. Yun, S. C. Nam, S. K. Jeong, Y. I. Yoon, J. Ind. Eng. Chem. 2014, 20, 1486–1492.
- 22
C. C. Lin, Y. H. Lin, C. S. Tan, J. Hazard. Mater.
2010, 175, 344–351.
10.1016/j.jhazmat.2009.10.009 Google Scholar
- 23 D. Fu, P. Zhang, Energy 2015, 87, 165–172.
- 24 C. H. Yu, C. H. Huang, C. S. Tan, Aerosol Air Qual. Res. 2012, 12, 745–769.
- 25 F. N. Ridha, V. Manovic, A. Macchi, E. J. Anthony, Appl. Energy 2015, 140, 297–303.
- 26 R. Sanz, G. Calleja, A. Arencibia, E. S. Sanz-Pérez, Microporous Mesoporous Mater. 2015, 209, 165–171.
- 27 L. Zhi-lin, T. Yang, Z. Kai, C. Yan, P. Wei-ping, J. Fuel Chem. Technol. 2013, 41 (4), 469–476.
- 28
M. Alonso, M. E. Diego, C. Pérez, J. R. Chamberlain, J. C. Abanades, Int. J. Greenhouse Gas Control
2014, 29, 142–152.
10.1016/j.ijggc.2014.08.002 Google Scholar
- 29
M. Olivares-Marín, E. M. Cuerda-Correa, A. Nieto-Sánchez, S. García, C. Pevida, S. Román, Chem. Eng. J.
2013, 217, 71–81.
10.1016/j.cej.2012.11.083 Google Scholar
- 30 A. Alabadi, S. Razzaque, Y. Yang, S. Chen, B. Tan, Chem. Eng. J. 2015, 281, 606–612.
- 31 M. V. Gil, N. Álvarez-Gutiérrez, M. Martínez, F. Rubiera, C. Pevida, A. Morán, Chem. Eng. J. 2015, 269, 148–158.
- 32 S. García, M. V. Gil, C. F. Martín, J. J. Pis, F. Rubiera, C. Pevida, Chem. Eng. J. 2011, 171, 549–556.
- 33 H. V. Thang, L. Grajciar, P. Nachtigall, O. Bludský, C. O. Areán, E. Frýdová, R. Bulánek, Catal. Today 2014, 227, 50–56.
- 34 R. Krishna, J. M. van Baten, Sep. Purif. Technol. 2012, 87, 120–126.
- 35 C. Chen, S. S. Kim, W. S. Cho, W. S. Ahn, Appl. Surf. Sci. 2015, 332, 167–171.
- 36 S. Castilho, A. Kiennemann, M. F. C. Pereira, A. P. S. Dias, Chem. Eng. J. 2013, 226, 146–153.
- 37 Y. Li, C. Zhao, H. Chen, L. Duan, X. Chen, Chem. Eng. Technol. 2009, 32 (8), 1176–1182.
- 38 M. Mohammadi, P. Lahijani, A. R. Mohamed, Chem. Eng. J. 2014, 243, 455–464.
- 39 T. H. Wang, D. C. Xiao, C. H. Huang, Y. K. Hsieh, C. S. Tan, C. F. Wang, J. Hazard. Mater. 2014, 270, 92–101.
- 40 K. W. Ma, H. Teng, J. Am. Ceram. Soc. 2010, 93 (1), 221–227.
- 41 V. Manovic, E. J. Anthony, D. Loncarevic, Chem. Eng. Sci. 2009, 64, 3236–3245.
- 42 M. Ives, R. C. Mundy, P. S. Fennell, J. F. Davidson, J. S. Dennis, A. N. Hayhurst, Energy Fuels 2008, 22, 3852–3857.
- 43
A. J. Nieto-Sanchez, M. Olivares-Marin, S. Garcia, C. Pevida, E. M. Cuerda-Correa, Chemosphere
2013, 93, 2148–2158.
10.1016/j.chemosphere.2013.07.069 Google Scholar
- 44 S. S. Lee, J. S. Yoo, G. H. Moon, S. W. Park, D. W. Park, K. J. Oh, Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem. 2004, 49 (1), 314–315.
- 45 O. Jaiboon, B. Chalermsinsuwan, L. Mekasut, P. Piumsomboon, Chem. Eng. J. 2013, 219, 262–272.
- 46 Y. Xu, C. Luo, Y. Zheng, H. Ding, D. Zhou, L. Zhang, Chem. Eng. Technol. 2017, 40, 522–528.
- 47 H. Chen, C. Zhao, Chem. Eng. Technol. 2016, 39, 1058–1066.
- 48 F. Raganati, P. Ammendola, R. Chirone, Particuology 2015, 23, 8–15.
- 49 P. Ammendola, F. Raganati, R. Chirone, Fuel Process. Technol. 2015, 134, 494–501.
- 50 F. Raganati, P. Ammendola, R. Chirone, Powder Technol. 2014, 268, 347–356.
- 51 H. W. Chen, Z. H. Zhao, K. Patchigolla, J. Oakey, Adv. Mat. Res. 2013, 781–784, 2517–2523.
- 52 G. Tardos, R. Pfeffer, Powder Technol. 1995, 85, 29–35.
- 53 J. Blamey, E. J. Anthony, J. Wang, P. S. Fennell, Prog. Energy Combust. Sci. 2010, 36, 260–279.
- 54 D. Geldart, Powder Technol. 1973, 7 (5), 285–292.
- 55 J. M. Valverde, P. E. Sanchez-Jimenez, L. A. Perez-Maqueda, J. Phys. Chem. 2015, 119, 1623–1641.
- 56 W. Wang, Y. Li, Ind. Eng. Chem. Res. 2001, 40, 5066–5073.