Experimental and Numerical Investigation of CO2 Absorption Using Nanofluids in a Hollow-Fiber Membrane Contactor
Majid Ansaripour
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Search for more papers by this authorCorresponding Author
Masoud Haghshenasfard
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Correspondence: Masoud Haghshenasfard ([email protected]), Department of Chemical Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran.Search for more papers by this authorAhmad Moheb
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Search for more papers by this authorMajid Ansaripour
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Search for more papers by this authorCorresponding Author
Masoud Haghshenasfard
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Correspondence: Masoud Haghshenasfard ([email protected]), Department of Chemical Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran.Search for more papers by this authorAhmad Moheb
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Search for more papers by this authorAbstract
To remove CO2 from N2/CO2 gas mixtures, α-Al2O3/water and γ-Al2O3/water nanofluids have been used in a dialysis nanoporous hollow-fiber membrane contactor. The mass transfer coefficient, CO2 removal efficiency, and CO2 concentration profile were determined under different operating conditions. The results showed that the addition of α-Al2O3 and γ-Al2O3 nanoparticles to the solvent increased the mass transfer rate, and by raising the nanofluid concentration, the removal efficiency enhanced. The process was simulated by means of computational fluid dynamics (CFD) method. The good agreement between CFD predictions and experimental results indicates that the CFD is a reliable tool for optimization of the process.
References
- 1 L. Gómez-Coma, A. Garea, A. Irabien, Chem. Eng. Technol. 2017, 40 (4), 1–14. DOI: 10.1002/ceat.201600293
- 2 Y. Lv, X. Yu, S. Tu, J. Yan, E. Dahlquist, Appl. Energy 2012, 97, 283–388. DOI: 10.1016/j.apenergy.2012.01.034
- 3 Z. Zhang, Y. Yan, L. Zhang, S. Ju, Global NEST J. 2014, 16 (2), 354–374.
- 4 C. Gouedard, A. Rey, V. Cuzuel, J. Brunet, B. Delfort, D. Picq, J. Dugay, J. Vial, V. Pichon, F. Launay, L. Assam, J. Ponthus, P. L. Carrette, J. Greenhouse Gas Control 2014, 61–69. DOI: 10.1016/j.ijggc.2014.07.013
- 5 A. Mansourizadeh, A. F. Ismail, J. Hazard. Mater. 2009, 171 (1–3), 38–53. DOI: 10.1016/j.jhazmat.2009.06.026
- 6 A. Gabelman, S. T. Hwang, J. Membr. Sci. 1999, 159 (1–2), 61–106. DOI: 10.1016/S0376-7388(99)00040-X
- 7 X. Wang, J. Gao, J. Zhang, X. Zhang, R. Guo, Chem. Eng. Technol. 2015, 38 (2), 215–222. DOI: 10.1002/ceat.201400338
- 8 S. P. Yan, M. X. Fang, W. F. Zhang, S. Y. Wang, Z. K. Xu, Z. Y. Luo, K. F. Cen, Fuel Process. Technol. 2007, 88 (5), 501–511. DOI: 10.1016/j.fuproc.2006.12.007
- 9 Z. Qi, E. L. Cussler, J. Membr. Sci. 1985, 23 (3), 321–332. DOI: 10.1016/S0376-7388(00)83149-X
- 10 Z. Qi, E. L. Cussler, J. Membr. Sci. 1985, 23 (3), 333–345. DOI: 10.1016/S0376-7388(00)83150-6
- 11 H. A. Rangwala, J. Membr. Sci. 1996, 112 (2), 229–240. DOI: 10.1016/0376-7388(95)00293-6
- 12 R. Wang, H. Y. Zhang, P. H. M. Feron, D. T. Liang, Sep. Purif. Technol. 2005, 46 (1–2), 33–40. DOI: 10.1016/j.seppur.2005.04.007
- 13 Y. S. Kim, S. M. Yang, Sep. Purif. Technol. 2000, 21 (1–2), 101–109. DOI: 10.1016/S1383-5866(00)00195-7
- 14 P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, G. F. Versteeg, Chem. Eng. Sci. 2002, 57 (9), 1639–1651. DOI: 10.1016/S0009-2509(02)00041-6
- 15 S. H. Lin, J. Chin. Inst. Chem. Eng. 2008, 39 (1), 13–21. DOI: 10.1016/j.jcice.2007.11.010
- 16 M. V. Dagaonkar, H. J. Heeres, A. A. C. M. Beenackers, V. G. Pangarkar, Chem. Eng. J. 2003, 92 (1–3), 151–159. DOI: 10.1016/S1385-8947(02)00188-2
- 17 K. C. Ruthiya, J. van der Schaaf, B. F. M. Kuster, J. C. Schouten, Chem. Eng. J. 2003, 96 (1–3), 55–69. DOI: 10.1016/j.cej.2003.08.005
- 18 J. F. Demmink, A. Mehra, A. A. C. M. Beenackers, Chem. Eng. J. 1998, 53 (16), 2885–2902. DOI: 10.1016/S0009-2509(98)00104-3
- 19 M. Akhtari, M. Haghshenasfard, M. R. Talaie, Numer. Heat Transfer, Part A 2013, 63 (12), 941–958. DOI: 10.1080/10407782.2013.772855
- 20 I. T. Pineda, J. W. Lee, I. Jung, Y. T. Kang, Int. J. Refrig. 2012, 35 (5), 1402–1409. DOI: 10.1016/j.ijrefrig.2012.03.017
- 21 J. W. Lee, Y. T. Kang, Energy 2013, 53 (C), 206–211. DOI: 10.1016/j.energy.2013.02.047
- 22 Z. Samadi, M. Haghshenasfard, A. Moheb, Chem. Eng. Technol. 2014, 37 (3), 462–470. DOI: 10.1002/ceat.201300339
- 23 A. Golkhar, P. Keshavarz, D. Mowla, J. Membr. Sci. 2013, 433, 17–24. DOI: 10.1016/j.memsci.2013.01.022
- 24
J. Salimi, M. Haghshenasfard, S. G. Etemad, Heat Mass Transfer
2014, 51 (5), 621–629. DOI: 10.1007/s00231-014-1439-5
10.1007/s00231‐014‐1439‐5 Google Scholar
- 25 Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park, K. H. Lee, J. Membr. Sci. 2001, 194 (1), 57–67. DOI: 10.1016/S0376-7388(01)00524-5
- 26 P. Keshavarz, J. Fathikalajahi, S. Ayatollahi, Sep. Purif. Technol. 2008, 63 (1), 145–155. DOI: 10.1016/j.seppur.2008.04.008
- 27 R. Faiz, M. Al-Marzouqi, J. Membr. Sci. 2009, 342 (1–2), 269–278. DOI: 10.1016/j.memsci.2009.06.050
- 28 M. Rezakazemi, Z. Niazi, M. Mirfendereski, S. Shirazian, T. Mohammadi, A. Pak, Chem. Eng. J. 2011, 168 (3), 1217–1226. DOI: 10.1016/j.cej.2011.02.019
- 29 Z. Zhang, Y. Yan, Y. Chen, L. Zhang, J. Nat. Gas Sci. Eng. 2014, 20, 58–66. DOI: 10.1016/j.jngse.2014.06.008
- 30 N. Goyal, S. Suman, S. K. Gupta, J. Membr. Sci. 2015, 474, 64–82. DOI: 10.1016/j.memsci.2014.09.036
- 31 R. E. Treybal, Mass Transfer Operation, 3rd ed., McGraw Hill, New York 1980.
- 32 A. Mansourizadeh, A. F. Ismail, J. Membr. Sci. 2010, 348 (1–2), 260–267. DOI: 10.1016/j.memsci.2009.11.010
- 33 D. M. Himmelblau, J. B. Riggs, Basic Principles and Calculations in Chemical Engineering, 7th ed., Prentice-Hall, New York 2004.
- 34 C. S. Tan, J. E. Chen, Sep. Purif. Technol. 2006, 49 (2), 174–180. DOI: 10.1016/j.seppur.2005.10.001
- 35 R. Prasad, K. K. Sirkar, AIChE J. 1988, 34 (2), 177–188. DOI: 10.1002/aic.690340202
- 36 J. Happel, AIChE J. 1959, 5 (2), 174–177. DOI: 10.1002/aic.690050211
- 37 R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, New York 1960.
- 38 E. N. Fuller, P. D. Schettler, J. C. Giddings, Ind. Eng. Chem. 1966, 58 (5), 18–27. DOI: 10.1021/ie50677a007
- 39 G. F. Versteeg, W. P. M. van Swaaij, J. Chem. Eng. Data 1988, 33 (1), 29–34. DOI: 10.1021/je00051a011
- 40 S. Boributh, S. Assabumrungrat, N. Laosiripojana, R. Jiraratananon, J. Membr. Sci. 2011, 380 (1–2), 21–33. DOI: 10.1016/j.memsci.2011.06.029
- 41 G. D. Bothun, B. L. Knutson, J. Strobel, H. S. E. Nokes, E. A. Brignole, S. Diaz, J. Supercrit. Fluids 2003, 25 (2), 119–134. DOI: 10.1016/S0896-8446(02)00093-1
- 42 E. Nagy, T. Feczkó, B. Koroknai, Chem. Eng. Sci. 2007, 62 (24), 7391–7398. DOI: 10.1016/j.ces.2007.08.064
- 43 E. Alper, B. Wichtendahl, W. D. Deckwer, Chem. Eng. Sci. 1980, 35 (1–2), 217–222. DOI: 10.1016/0009-2509(80)80090-X
- 44 R. L. Kars, R. J. Best, A. A. H. Drinkenburg, Chem. Eng. Sci. 1979, 17 (3), 201–210. DOI: 10.1016/0300-9467(79)80104-5
- 45 R. Faiz, M. Al-Marzouqi, Sep. Purif. Technol. 2011, 76 (3), 351–361. DOI: 10.1016/j.seppur.2010.11.005
- 46 J. L. Li, B. H. Chen, Sep. Purif. Technol. 2005, 41 (2), 109–122. DOI: 10.1016/j.seppur.2004.09.008