Measurement of Micro Kinetics of Hydrogenation in Liquid Phase Using Raman Spectroscopy
Armin Fischer
Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Institute of Separation Science and Technology, Erlangen, Germany.
Search for more papers by this authorCorresponding Author
Karsten Müller
Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Institute of Separation Science and Technology, Erlangen, Germany.
Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Institute of Separation Science and Technology, Erlangen, Germany.Search for more papers by this authorWolfgang Arlt
Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Institute of Separation Science and Technology, Erlangen, Germany.
Search for more papers by this authorArmin Fischer
Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Institute of Separation Science and Technology, Erlangen, Germany.
Search for more papers by this authorCorresponding Author
Karsten Müller
Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Institute of Separation Science and Technology, Erlangen, Germany.
Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Institute of Separation Science and Technology, Erlangen, Germany.Search for more papers by this authorWolfgang Arlt
Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Institute of Separation Science and Technology, Erlangen, Germany.
Search for more papers by this authorAbstract
Hydrogenation of liquid organic hydrogen carriers is usually carried out in liquid phase. To measure the kinetics of this hydrogenation, an experimental setup using in situ Raman spectroscopy for analysis of the reaction mixture is proposed. With this setup it is possible to perform hydrogenation reactions at temperatures of up to 573 K and pressures up to 25 MPa. For validation of the experimental setup the hydrogenation of 1-octene was measured in liquid phase. The reaction progress can be monitored in detail by Raman spectroscopy. To determine kinetic parameters from the experimental data, two modeling approaches were applied: a classic kinetic model and a thermodynamic kinetic model. The results were compared to literature data.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ceat_201600084_sm_miscellaneous_information.pdf166.8 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 D. Teichmann, K. Stark, K. Müller, G. Zöttl, P. Wasserscheid, W. Arlt, Energy Environ. Sci. 2012, 5, 9044–9054. DOI: 10.1039/C2EE22070A
- 2 J. Wild, T. Friedrich, A. Cooper, B. Toseland, G. Muraro, W. TeGrotenhuis, Y. Wang, P. Humble, A. Karim, in Proc. 18th World Hydrogen Energy Conf. (Eds: D. Stolten), Forschungszentrum, Zentralbibliothek Jülich, Essen 2010, 189–197.
- 3 M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH Verlag, Weinheim 2006.
- 4 U. K. Singh, M. A. Vannice, Appl. Catal., A 2001, 213, 1–24. DOI: 10.1016/S0926-860X(00)00885-1
- 5 F. Sotoodeh, Ph. D. Thesis, University of British Columbia, Vancouver 2011.
- 6 I. Bergault, P. Fouilloux, C. Joly-Vuillemin, H. Delmas, J. Catal. 1998, 175, 328–337. DOI: 10.1006/jcat.1998.2019
- 7 A. Pintar, J. Batista, J. Levec, T. Kajiuchi, Appl. Catal., B 1996, 11, 81–98. DOI: 10.1016/S0926-3373(96)00036-7
- 8 A. Sarkar, D. Seth, F. T. T. Ng, G. L. Rempel, AIChE J. 2006, 52, 1142–1156. DOI: 10.1002/aic.10722
- 9 R. A. Rajadhyaksha, S. L. Karwa, Chem. Eng. Sci. 1986, 41, 1765–1770. DOI: 10.1016/0009-2509(86)87055-5
- 10 H. S. Lo, M. E. Paulaitis, AIChE J. 1981, 27, 842–844. DOI: 10.1002/aic.690270521
- 11
F. A. Carey, R. J. Sunberg, Advanced Organic Chemistry, 5th ed., Springer, New York 2007.
10.1007/978-0-387-71481-3_2 Google Scholar
- 12 S. Toppinen, T. K. Rantakylä, T. Salmi, J. Aittamaa, Ind. Eng. Chem. Res. 1996, 35, 4424–4433. DOI: 10.1021/ie950636c
- 13 S. Toppinen, T. K. Rantakylä, T. Salmi, J. Aittamaa, Ind. Eng. Chem. Res. 1996, 35, 1824–1833. DOI: 10.1021/ie9504314
- 14 S. Toppinen, T.-K. Rantakylä, T. Salml, J. Aittamaa, Catal. Today 1997, 38, 23–30. DOI: 10.1016/S0920-5861(97)00035-7
- 15 S. Toppinen, T. Salmi, T. K. Rantakylä, J. Aittamaa, Ind. Eng. Chem. Res. 1997, 36, 2101–2109. DOI: 10.1021/ie960263v
- 16 B. Battsengel, Ph. D. Thesis, RWTH Aachen University 2002.
- 17 S. K. Luther, S. Stehle, K. Weihs, S. Will, A. Braeuer, Anal. Chem. 2015, 87, 8165–8172. DOI: 10.1021/acs.analchem.5b00699
- 18 A. Stratmann, Ph. D. Thesis, Ruhr-Universität Bochum 2003.
- 19 J. J. Schuster, S. Will, A. Leipertz, A. Braeuer, J. Raman Spectrosc. 2014, 45, 246–252. DOI: 10.1002/jrs.4451
- 20 M. Pelletier, Appl. Spectrosc. 2003, 57, 20A.
- 21 C. Fräulin, G. Rinke, R. Dittmeyer, Microfluid. Nanofluid. 2014, 16, 149–157. DOI: 10.1007/s10404-013-1223-8
- 22 A. Urakawa, F. Trachsel, P. R. von Rohr, A. Baiker, Analyst 2008, 133, 1352–1354. DOI: 10.1039/B808984C
- 23 E. Mikolajska, V. Calvino-Casilda, M. A. Bañares, Appl. Catal., A 2012, 421–422, 164–171. DOI: 10.1016/j.apcata.2012.02.014
- 24 J. R. Schmink, J. L. Holcomb, N. E. Leadbeater, Chem. Eur. J. 2008, 14, 9943–9950. DOI: 10.1002/chem.200801158
- 25 V. Calvino-Casilda, M. A. Banares, in Catalysis (Eds: M. G. James), Vol. 24 The Royal Society of Chemistry, London 2012, 1–47.
- 26 P. Larkin, Infrared and Raman Spectroscopy; Principles and Spectral Interpretation, Elsevier Science, Amsterdam 2011.
- 27 S. K. Luther, J. J. Schuster, A. Leipertz, A. Braeuer, J. Supercrit. Fluids 2013, 84, 146–154. DOI: 10.1016/j.supflu.2013.09.012
- 28 J. M. Prausnitz, F. H. Shair, AIChE J. 1961, 7, 682–687. DOI: 10.1002/aic.690070430
- 29 A. Fredenslund, J. Gmehling, M. L. Michelsen, P. Rasmussen, J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev. 1977, 450–462.
- 30 G. Soave, Chem. Eng. Sci. 1972, 27, 1197–1203. DOI: 10.1016/0009-2509(72)80096-4