Recent developments on the contribution of glutenin and puroindoline proteins to improve wheat grain quality
Anjali Rai
Department of Chemical Engineering and Technology, Yeungnam University, Gyeongsan, Korea
Search for more papers by this authorCorresponding Author
Sung S. Han
Department of Chemical Engineering and Technology, Yeungnam University, Gyeongsan, Korea
Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Korea
Correspondence Sung S. Han, Department of Chemical Engineering and Technology, Yeungnam University, Gyeongsan 38541, Korea.
Email: [email protected]
Search for more papers by this authorAnjali Rai
Department of Chemical Engineering and Technology, Yeungnam University, Gyeongsan, Korea
Search for more papers by this authorCorresponding Author
Sung S. Han
Department of Chemical Engineering and Technology, Yeungnam University, Gyeongsan, Korea
Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Korea
Correspondence Sung S. Han, Department of Chemical Engineering and Technology, Yeungnam University, Gyeongsan 38541, Korea.
Email: [email protected]
Search for more papers by this authorAbstract
Background and Objectives
Wheat is most staple food crop for making different end products. The major factors determining the wheat flour end-use are glutenins and puroindolines. It is very important to identify the composition, variation, and functional characteristics of these key factors.
Findings
The glutenin subunits comprise two subgroups—high molecular weight glutenin subunits (HMW-GS), and low molecular weight glutenin subunits (LMW-GS). Puroindolines genes depict a wide diversity of both PINA and PINB allelic forms. The prevalence and relative proportions of these types may vary depending on several genetic and environmental factors.
Conclusion
Current review summarizes recently published research on the impact of glutenin genes governing gluten strength and puroindolines genes related to grain softness. It encompasses recent reports on the development of DNA-based molecular markers utilized to identify novel alleles associated with HMW-GS, LMW-GS, and puroindoline genes in diverse wheat genotypes.
Significance and Novelty
Substantial advancements have been made to identify associations between gene expression and grain quality and to develop improved wheat grain quality lines. Nevertheless, a novel marker system such as multiplex polymerase chain reaction and high throughput analysis is needed to screen large numbers of markers at low cost for rapid and precise analysis of germplasm, mapping, and marker-assisted selection.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
cche10607-sup-0001-cchem-06-22-0122-fi-cm-File005.docx141.7 KB | Supporting information. |
cche10607-sup-0002-cchem-06-22-0122-fi-cm-File006.docx22.5 KB | Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ali, N., Anjum, M. M., Khan, G. R., & Ali, R. J. G. P. (2022). Unraveling wheat grain quality, physiological indices, dry matter accumulation, and attenuating water stress adverse effect via foliar potassium application at different growth stages. Gesunde Pflanzen, 74(1), 41–52.
- Altpeter, F., Vasil, V., Srivastava, V., & Vasil, I. K. (1996). Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nature Biotechnology, 14(9), 1155–1159.
- Anjum, F. M., & Walker, C. (1991). Review on the significance of starch and protein to wheat kernel hardness. Journal of the Science of Food and Agriculture, 56(1), 1–13.
- Appelbee, M.-J., Mekuria, G., Nagasandra, V., Bonneau, J., Eagles, H., Eastwood, R., & Mather, D. (2009). Novel allelic variants encoded at the Glu-D3 locus in bread wheat. Journal of Cereal Science, 49(2), 254–261.
- Bailey, C. H. (1941). A translation of Beccari's lecture ‘concerning grain’ (1728). Cereal Chemistry, 18, 555–561.
- Barro, F., Barceló, P., Lazzeri, P. A., Shewry, P. R., Ballesteros, J., & Martín, A. (2003). Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes. Molecular Breeding, 12(3), 223–229.
- Blechl, A., Lin, J., Nguyen, S., Chan, R., Anderson, O. D., & Dupont, F. M. (2007). Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. Journal of Cereal Science, 45(2), 172–183.
- Cao, H., Duncan, O., Islam, S., Zhang, J., Ma, W., & Millar, A. H. (2021). Increased wheat protein content via introgression of an HMW glutenin selectively reshapes the grain proteome. Molecular & Cellular Proteomics, 20, 100097.
- Chapla, P., Vieira, E., Franco, F., Linde, G., Silva, G., Colauto, N., Marchioro, V., & Schuster, I. (2017). High molecular weight glutenin subunits and the classification used in Brazilian wheat industry. Genetics and Molecular Research, 16(3), 1–10.
- Cho, K., Jang, Y.-R., Lim, S.-H., Altenbach, S. B., Gu, Y. Q., Simon-Buss, A., & Lee, J.-Y. (2021). Proteomic determination of low-molecular-weight glutenin subunit composition in aroona near-isogenic lines and standard wheat cultivars. International Journal of Molecular Sciences, 22(14), 7709.
- Chunduri, V., Kaur, A., Kaur, S., Kumar, A., Sharma, S., Sharma, N., Singh, P., Kapoor, P., Kaur, S., & Kumari, A. (2021). Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day–night combined heat stresses during grain filling in wheat. Frontiers in Plant Science, 12, 973.
- Dal Cortivo, C., Ferrari, M., Visioli, G., Lauro, M., Fornasier, F., Barion, G., Panozzo, A., & Vamerali, T. (2020). Effects of seed-applied biofertilizers on rhizosphere biodiversity and growth of common wheat (Triticum aestivum L.) in the field. Frontiers in Plant Science, 11, 72.
- Ding, J., Li, F., Le, T., Wu, P., Zhu, M., Li, C., Zhu, X., & Guo, W. J. A. (2020). Nitrogen management strategies of tillage and no-tillage wheat following rice in the Yangtze river basin, China: Grain yield, grain protein, nitrogen efficiency, and economics. Scientific Reports, 10(2), 155.
- Dong, K., Hao, C., Wang, A., Cai, M., & Yan, Y. J. C. R. C. (2009). Characterization of HMW glutenin subunits in bread and tetraploid wheats by reversed-phase high-performance liquid chromatography. Cereal Research Communications, 37(1), 65–73.
- Dreisigacker, S., Xiao, Y., Sehgal, D., Guzman, C., He, Z., Xia, X., & Peña, R. J. (2020). SNP markers for low molecular glutenin subunits (LMW-GSs) at the Glu-A3 and Glu-B3 loci in bread wheat. PLoS ONE, 15(5), e0233056.
- Erkinbaev, C., Derksen, K., & Paliwal, J. (2019). Single kernel wheat hardness estimation using near infrared hyperspectral imaging. Infrared Physics & Technology, 98, 250–255.
- Fei, D., Feng, L., Yaqin, J., Feng, Y., Qiuyan, Y., Jinxiu, L., & Yanting, S. H. E. N. (2022). Effect of nitrogen topdressing rate on yield and quality of black-grained wheat varieties (strains). Journal of Nuclear Agricultural Science, 36(2), 435.
- Franaszek, S., & Salmanowicz, B. (2021). Composition of low-molecular-weight glutenin subunits in common wheat (Triticum aestivum L.) and their effects on the rheological properties of dough. Open Life Sciences, 16(1), 641–652.
- Furtado, A., Bundock, P. C., Banks, P., Fox, G., Yin, X., & Henry, R. (2015). A novel highly differentially expressed gene in wheat endosperm associated with bread quality. Scientific Reports, 5(1), 1–14.
- Gao, J., Guo, Y., Yan, R., Liang, J., & Yang, D. (2022). Mechanism differences between reductive and oxidative dough rheology improvers in the formation of 1D and 3D gluten network. Biomaterials, 280, 121275.
- Gao, L., Ma, W., Chen, J., Wang, K., Li, J., Wang, S., Bekes, F., Appels, R., Yan, Y., & Chemistry, F. (2010). Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. Journal of Agricultural and Food Chemistry, 58(5), 2777–2786.
- Gautier, M.-F., Aleman, M.-E., Guirao, A., Marion, D., & Joudrier, P. (1994). Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Molecular Biology, 25(1), 43–57.
- Giroux, M. J., & Morris, C. F. (1998). Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proceedings of the National Academy of Sciences, 95(11), 6262–6266.
- Greenwell, P., & Schofield, J. D. (1986). A starch granule protein associated with endosperm softness in wheat. Cereal Chemistry, 63(4), 379–380.
- Guzmán, C., Crossa, J., Mondal, S., Govindan, V., Huerta, J., Crespo-Herrera, L., Vargas, M., Singh, R. P., & Ibba, M. I. (2022). Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines. Field Crop Reseacrh, 284, 108585.
- Guzmán, C., Ibba, M. I., Álvarez, J. B., Sissons, M., & Morris, C. (2022). Wheat Quality. Wheat improvement (pp. 177–193). Springer.
10.1007/978-3-030-90673-3_11 Google Scholar
- Halford, N., Forde, J., Anderson, O., Greene, F., & Shewry, P. (1987). The nucleotide and deduced amino acid sequences of an HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivum L.) and comparison with those of genes from chromosomes 1A and 1D. Theoretical and Applied Genetics, 75(1), 117–126.
- He, Z. H., Liu, L., Xia, X. C., Liu, J. J., & Pena, R. J. (2005). Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chemistry, 82(4), 345–350.
- Huang, X.-Q., & Brûlé-Babel, A. (2011). Development of simple and co-dominant PCR markers to genotype puroindoline a and b alleles for grain hardness in bread wheat (Triticum aestivum L.). Journal of Cereal Science, 53(3), 277–284.
- Ibrahim, A., Varga, A. C., Jolankai, M., & Safranyik, F. (2018). Applying infrared technique as a nondestructive method to assess wheat grain hardness. International Journal of Science and Qualitative Analysis, 4(3), 100–107.
- Ikeda, T., Araki, E., Fujita, Y., & Yano, H. (2006). Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheats. Theoretical and Applied Genetics, 112(2), 327–334.
- Ikeda, T., Nagamine, T., Fukuoka, H., & Yano, H. (2002). Identification of new low-molecular-weight glutenin subunit genes in wheat. Theoretical and Applied Genetics, 104(4), 680–687.
- Islam, S., Yu, Z., She, M., Zhao, Y., & Ma, W. (2019). Wheat gluten protein and its impacts on wheat processing quality. Frontiers of Agricultural Science and Engineering, 6(3), 279–287.
- Jang, Y.-R., Beom, H.-R., Altenbach, S. B., Lee, M.-K., Lim, S.-H., & Lee, J.-Y. J. M. (2017). Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars. Molecules, 22(7), 1055.
- Jang, Y.-R., Kim, S., Sim, J.-R., Lee, S.-B., Lim, S.-H., Kang, C.-S., Choi, C., Goo, T.-W., & Lee, J.-Y. (2021). High-throughput analysis of high-molecular weight glutenin subunits in 665 wheat genotypes using an optimized MALDI-TOF–MS method. 3 Biotech, 11(2), 1–8.
- Johansson, E., Prieto-Linde, M. L., & Jönsson, J. Ö. (2001). Effects of wheat cultivar and nitrogen application on storage protein composition and breadmaking quality. Cereal Chemistry, 78(1), 19–25.
- Katyal, M., Kaur, A., & Singh, N. (2019). Evaluation of pasting and dough rheological properties of composite flours made from flour varied in gluten strength. Journal of Food Science and Technology, 56(5), 2700–2711.
- Kolster, P., Krechting, C., & Van Gelder, W. (1993). Expression of individual HMW glutenin subunit genes of wheat (Triticum aestivum L.) in relation to differences in the number and type of homoeologous subunits and differences in genetic background. Theoretical and Applied Genetics, 87(1), 209–216.
- Kumar, T. P. J., Rai, A., Singh, S. K., Kumar, R. R., Ahlawat, A. K., Saini, S., Shukla, R., Bedi, N., & Mahendru-Singh, A. (2021). Development of near isogenic lines for grain softness through marker assisted backcross breeding in wheat. Journal of Plant Biochemistry and Biotechnology, 30, 1–11.
- Labuschagne, M., & Van Deventer, C. J. E. (1995). The effect of Glu-B1 high molecular weight glutenin subunits on biscuit-making quality of wheat. Euphytica, 83, 193–197.
- Lafiandra, D., & Shewry, P. R. (2022). Wheat glutenin polymers 2, the role of wheat glutenin subunits in polymer formation and dough quality. Journal of Cereal Science, 11, 103487.
- Lee, S.-B., Yang, Y.-J., Lim, S.-H., Gu, Y. Q., & Lee, J.-Y. J. M. (2021). A rapid, reliable RP-UPLC method for large-scale analysis of wheat HMW-GS alleles, Molecules. 26(20), 6174.
- Li, J., Wang, Y., Zhang, M., Liu, Y., Xu, X., Lin, G., Wang, Z., Yang, Y., & Zhang, Y. J. A. W. M. (2019). Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat. Agricultural Water Management, 211, 59–69.
- Li, J., Wang, Z., Yao, C., Zhang, Z., Liu, Y., & Zhang, Y. J. T. C. J. (2021). Micro-sprinkling irrigation simultaneously improves grain yield and protein concentration of winter wheat in the North China Plain. The Crop Journal, 9(6), 1397–1407.
- Li, Y., Fu, J., Shen, Q., & Yang, D. (2020). High-molecular-weight glutenin subunits: Genetics, structures, and relation to end use qualities. International Journal of Molecular Sciences, 22(1), 184.
- Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., & Ran, Y. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8(1), 1–5.
- Lillemo, M., Chen, F., Xia, X., William, M., Peña, R. J., Trethowan, R., & He, Z. (2006). Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm. Journal of Cereal Science, 44(1), 86–92.
- Liu, D., Wu, Y., Gao, Z., Yun, Y.-H. J. C., & Science, P. (2019). Comparative non-destructive classification of partial waxy wheats using near-infrared and Raman spectroscopy. Crop and Pasture Science, 70, 437–441.
- Liu, J., Zhang, J., Zhu, G., Zhu, D., & Yan, Y. J. T. C. J. (2022). Effects of water deficit and high N fertilization on wheat storage protein synthesis, gluten secondary structure, and breadmaking quality. The Journal of Antimicrobial Chemotherapy, 10(1), 216–223.
- Liu, L., He, Z., Yan, J., Zhang, Y., Xia, X., & Pena, R. J. (2005). Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B. 1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 142(3), 197–204.
- Liu, S., Chao, S., & Anderson, J. A. (2008). New DNA markers for high molecular weight glutenin subunits in wheat. Theoretical and Applied Genetics, 118(1), 177–183.
- Long, H., Wei, Y.-M., Yan, Z.-H., Baum, B., Nevo, E., & Zheng, Y.-L. (2005). Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theoretical and Applied Genetics, 111(7), 1251–1259.
- Ma, Q., Tao, R., Ding, Y., Zhang, X., Li, F., Zhu, M., Ding, J., Li, C., Guo, W., & Zhu, X. J. A. (2022). Can split application of slow-release fertilizer improve wheat yield, nitrogen efficiency and their stability in different ecological regions? Agronomy, 12(2), 407.
- Ma, W., Zhang, W., & Gale, K. (2003). Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 134(1), 51–60.
- Ma, X., Sajjad, M., Wang, J., Yang, W., Sun, J., Li, X., Zhang, A., & Liu, D. (2017). Diversity, distribution of puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 17(1), 1–12.
- Martin, J., Frohberg, R., Morris, C., Talbert, L., & Giroux, M. (2001). Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Science, 41(1), 228–234.
- Nirmal, R. C., Furtado, A., Wrigley, C., & Henry, R. J. (2016). Influence of gene expression on hardness in wheat. PLoS ONE, 11(10), e0164746.
- Nucia, A., Okoń, S., & Tomczyńska-Mleko, M. (2019). Characterization of HMW glutenin subunits in European spring common wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 66(3), 579–588.
- Pasha, I., Anjum, F., & Morris, C. (2010). Grain hardness: A major determinant of wheat quality. Food Science and Technology International, 16(6), 511–522.
- Payne, P., Holt, L., & Law, C. (1981). Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Theoretical and Applied Genetics, 60(4), 229–236.
- Payne, P., Law, C., & Mudd, E. (1980). Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics, 58(3), 113–120.
- Payne, P. I., & Lawrence, G. J. (1983). Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Communications, 11(1), 29–35.
- Peña, R., Gonzalez-Santoyo, H., & Cervantes, F. J. T. G. P. (2004). Bread-making quality-related parameters commonly used in. The Gluten Proteins, 295, 156.
- Pickering, P. A., & Bhave, M. (2007). Australian hard wheat cultivars are limited in their genetic variability in puroindoline genes. Plant Science, 172(2), 371–379.
- Qin, Z., Zhang, Z., Hua, X., Yang, W., Liang, X., Zhai, R., & Huang, C. J. S. R. (2022). Cereal grain 3D point cloud analysis method for shape extraction and filled/unfilled grain identification based on structured light imaging. Scientific Reports, 12(1), 1–16.
- Ragupathy, R., Naeem, H. A., Reimer, E., Lukow, O. M., Sapirstein, H. D., & Cloutier, S. (2008). Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theoretical and Applied Genetics, 116(2), 283–296.
- Rai, A., Singh, A.-M., Ganjewala, D., Kumar, R. R., Ahlawat, A. K., Singh, S. K., Sharma, P., & Jain, N. (2019). Rheological evaluations and molecular marker analysis of cultivated bread wheat varieties of India. Journal of Food Science and Technology, 56(4), 1696–1707.
- Ram, S., Boyko, E., Giroux, M., & Gill, B. (2002). Null mutation in puroindoline a is prevalent in Indian wheats: Puroindoline genes are located in the distal part of 5DS. Journal of Plant Biochemistry and Biotechnology, 11(2), 79–83.
- Rasheed, A., Wen, W., Gao, F., Zhai, S., Jin, H., Liu, J., Guo, Q., Zhang, Y., Dreisigacker, S., & Xia, X. (2016). Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 129(10), 1843–1860.
- Rasheed, A., Xia, X., Yan, Y., Appels, R., Mahmood, T., & He, Z. (2014). Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. Journal of Cereal Science, 60(1), 11–24.
- Ravel, C., Faye, A., Ben-Sadoun, S., Ranoux, M., Dardevet, M., Dupuits, C., Exbrayat, F., Poncet, C., Sourdille, P., & Branlard, G. (2020). SNP markers for early identification of high molecular weight glutenin subunits (HMW-GSs) in bread wheat. Theoretical and Applied Genetics, 133(3), 751–770.
- Roy, N., Islam, S., Al-Habbar, Z., Yu, Z., Liu, H., Lafiandra, D., Masci, S., Lu, M., Sultana, N., & Ma, W. (2020). Contribution to breadmaking performance of two different HMW glutenin 1Ay alleles expressed in hexaploid wheat. Journal of Agricultural and Food Chemistry, 69(1), 36–44.
- De Santis, M. A., Giuliani, M. M., Flagella, Z., Reyneri, A., & Blandino, M. (2020). Impact of nitrogen fertilisation strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Research, 254, 107829.
- Schwarz, G., Felsenstein, F., & Wenzel, G. (2004). Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat. Theoretical and Applied Genetics, 109(5), 1064–1069.
- Shewry, P. (2019). What is gluten—Why is it special? Frontiers in Nutrition, 6, 101.
- Siddiqi, R. A., Singh, T. P., Rani, M., & Sogi, D. S. (2021). Electrophoretic characterization and proportion of different protein fractions in wheat cultivars of North-India. Journal of Agriculture and Food Research, 4, 100137.
- Singh, A., Mantri, S., Sharma, M., Chaudhury, A., Tuli, R., & Roy, J. (2014). Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions. BMC Genomics, 15(1), 1–19.
- Visioli, G., Comastri, A., Imperiale, D., Paredi, G., Faccini, A., & Marmiroli, N. J. F. A. M. (2016). Gel-based and gel-free analytical methods for the detection of HMW-GS and LMW-GS in wheat flour. Food Analytical Methods, 9(2), 469–476.
- Wang, D., Li, F., Cao, S., Zhang, K. J. T., & Genetics, A. (2020). Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. TAG. Theoretical and Applied Genetics. Theoretische und angewandte Genetik, 133(5), 1521–1539.
- Wang, L., Li, G., Peña, R. J., Xia, X., & He, Z. (2010). Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). Journal of Cereal Science, 51(3), 305–312.
- Wang, L., Zhao, X., He, Z., Ma, W., Appels, R., Peña, R., & Xia, X. (2009). Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 118(3), 525–539.
- Wang, Z., Li, Y., Yang, Y., Liu, X., Qin, H., Dong, Z., Zheng, S., Zhang, K., & Wang, D. (2017). New insight into the function of wheat glutenin proteins as investigated with two series of genetic mutants. Scientific Reports, 7(1), 1–14.
- Wrigley, C., Asenstorfer, R., Batey, I., Cornish, G., Day, L., Mares, D., & Mrva, K. (2009). The biochemical and molecular basis of wheat quality. Wheat science and trade (pp. 490–519). Wiley-Blackwell.
10.1002/9780813818832.ch21 Google Scholar
- Wrigley, C., Batey, I., & Miskelly, D. (2017). Grain quality: The future is with the consumer, the scientist and the technologist. Cereal grains (pp. 691–725). Elsevier.
10.1016/B978-0-08-100719-8.00025-5 Google Scholar
- Wrigley, C. W., Corke, H., Seetharaman, K., & Faubion, J. (2015). Encyclopedia of food grains. Academic Press.
- Yamazaki, W., & Donelson, J. (1983). Kernel hardness of some US wheats. Cereal Chemistry, 60(5), 344–350.
- Yang, Y., Chai, Y., Zhang, X., Lu, S., Zhao, Z., Wei, D., Chen, L., & Hu, Y.-G. (2020). Multi-locus GWAS of quality traits in bread wheat: mining more candidate genes and possible regulatory network. Frontiers in Plant Science, 11, 1091.
- Yao, C., Zhang, C., Bi, C., Zhou, S., Dong, F., Liu, Y., Yang, F., Jiao, B., Zhao, H., & Lyu, M. (2022). Establishment and application of multiplex PCR systems based on molecular markers for HMW-GSs in wheat. Agriculture, 12(4), 556.
- Yu, Z., Islam, S., She, M., Diepeveen, D., Zhang, Y., Tang, G., Zhang, J., Juhasz, A., Yang, R., & Ma, W. J. T. P. J. (2018). Wheat grain protein accumulation and polymerization mechanisms driven by nitrogen fertilization. The Plant Journal: For Cell and Molecular Biology, 96(6), 1160–1177.
- Yu, Z., She, M., Zheng, T., Diepeveen, D., Islam, S., Zhao, Y., Zhang, Y., Tang, G., Zhang, Y., & Zhang, J. J. C. b. (2021). Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Communications Biology, 4(1), 1–16.
- Zhang, W., Gianibelli, M., Rampling, L., & Gale, K. (2004). Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 108(7), 1409–1419.
- Zhang, X., Jin, H., Zhang, Y., Liu, D., Li, G., Xia, X., He, Z., & Zhang, A. J. B. P. B. (2012). Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biology, 12(1), 1–16.
- Zhang, Y., Hu, M., Liu, Q., Sun, L., Chen, X., Lv, L., Liu, Y., Jia, X., & Li, H. (2018). Deletion of high-molecular-weight glutenin subunits in wheat significantly reduced dough strength and bread-baking quality. BMC Plant Biology, 18(1), 1–12.
- Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.-L., & Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7(1), 1–8.
- Zhao, H., Gao, C., Song, W., Zhang, Y., Gao, D., Zhang, X., Zhao, L., Yang, X., Liu, D., & Song, Q. J. C. R. C. (2020). Quality differences between NILs of wheat variety Longmai 20 possessing HMW-GS 7OE+ 8* and 17+ 18. Cereal Research Communications, 48(4), 493–498.
- Zhao, X., Xia, X., He, Z., Lei, Z., Appels, R., Yang, Y., Sun, Q., & Ma, W. (2007). Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theoretical and Applied Genetics, 114(3), 451–460.
- Zhong, Y., Vidkjær, N. H., Massange-Sanchez, J. A., Laursen, B. B., Gislum, R., Borg, S., Jiang, D., & Hebelstrup, K. H. J. P. S. (2020). Changes in spatiotemporal protein and amino acid gradients in wheat caryopsis after N-topdressing. Plant Science: An International Journal of Experimental Plant Biology. 291, 110336.
- Zhong, Y., Wang, W., Huang, X., Liu, M., Hebelstrup, K. H., Yang, D., Cai, J., Wang, X., Zhou, Q., & Cao, W. J. F. C. (2019). Nitrogen topdressing timing modifies the gluten quality and grain hardness related protein levels as revealed by iTRAQ. Food Chemistry, 277, 135–144.
- Zhong, Y., Xu, D., Hebelstrup, K. H., Yang, D., Cai, J., Wang, X., Zhou, Q., Cao, W., Dai, T., & Jiang, D. J. B. P. B. (2018). Nitrogen topdressing timing modifies free amino acids profiles and storage protein gene expression in wheat grain. BMC Plant Biology, 18(1), 1–14.
- Zhou, J., Liu, D., Deng, X., Zhen, S., Wang, Z., & Yan, Y. J. (2018). Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture, 98(11), 4357–4368.