Advancements in Hydroxyapatite Nanocomposites for Dynamic Heavy Metal Adsorption: A Review
Corresponding Author
Karim Dânoun
Mohammed VI Polytechnic University, MAScIR Foundation, Lot 660-Hay Moulay Rachid, Ben Guerir, 43150 Morocco
E-mail: [email protected]
Search for more papers by this authorSalah Eddine Marrane
Hassan II University of Casablanca, FST-Mohammedia, Laboratory of Materials, Catalysis and Valorisation of Natural Resources, URAC 24, B.P. 146, Casablanca, 20650 Morocco
Search for more papers by this authorSoumia Aboulhrouz
Mohammed VI Polytechnic University, MAScIR Foundation, Lot 660-Hay Moulay Rachid, Ben Guerir, 43150 Morocco
Search for more papers by this authorYounes Essamlali
Mohammed VI Polytechnic University, MAScIR Foundation, Lot 660-Hay Moulay Rachid, Ben Guerir, 43150 Morocco
Search for more papers by this authorGhizlane Achagri
Chinese Academy of Sciences, Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Urumqi, 830011 China
University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, 100049 China
Search for more papers by this authorMohamed Zahouily
Mohammed VI Polytechnic University, MAScIR Foundation, Lot 660-Hay Moulay Rachid, Ben Guerir, 43150 Morocco
Hassan II University of Casablanca, FST-Mohammedia, Laboratory of Materials, Catalysis and Valorisation of Natural Resources, URAC 24, B.P. 146, Casablanca, 20650 Morocco
Search for more papers by this authorCorresponding Author
Karim Dânoun
Mohammed VI Polytechnic University, MAScIR Foundation, Lot 660-Hay Moulay Rachid, Ben Guerir, 43150 Morocco
E-mail: [email protected]
Search for more papers by this authorSalah Eddine Marrane
Hassan II University of Casablanca, FST-Mohammedia, Laboratory of Materials, Catalysis and Valorisation of Natural Resources, URAC 24, B.P. 146, Casablanca, 20650 Morocco
Search for more papers by this authorSoumia Aboulhrouz
Mohammed VI Polytechnic University, MAScIR Foundation, Lot 660-Hay Moulay Rachid, Ben Guerir, 43150 Morocco
Search for more papers by this authorYounes Essamlali
Mohammed VI Polytechnic University, MAScIR Foundation, Lot 660-Hay Moulay Rachid, Ben Guerir, 43150 Morocco
Search for more papers by this authorGhizlane Achagri
Chinese Academy of Sciences, Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Urumqi, 830011 China
University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, 100049 China
Search for more papers by this authorMohamed Zahouily
Mohammed VI Polytechnic University, MAScIR Foundation, Lot 660-Hay Moulay Rachid, Ben Guerir, 43150 Morocco
Hassan II University of Casablanca, FST-Mohammedia, Laboratory of Materials, Catalysis and Valorisation of Natural Resources, URAC 24, B.P. 146, Casablanca, 20650 Morocco
Search for more papers by this authorAbstract
In recent years, significant progress has been made in the development of integrated hydroxyapatite-based materials for fixed bed continuous flow column adsorption processes in industrial wastewater treatment, particularly for the removal of heavy metals. This review aims to provide a comprehensive overview of the latest advances in this specialized application, focusing on the principles, materials, operating parameters, and performance evaluation criteria specific to the removal of heavy metals from industrial wastewater. The advantages and challenges associated with hydroxyapatite-based adsorption processes for heavy metal removal are discussed, as well as possible future research directions, with particular emphasis on the environmentally friendly and cost-effective aspects. By presenting a synthesis of the current state of the art technologies and methodologies for heavy metals removal from industrial wastewater, this review contributes to the development of sustainable and cost-effective strategies for the management of industrial wastewater pollution.
Conflicts of Interest
The authors declare no conflict of interest.
References
- 1Q. Guo, N. Li, Y. Bing, S. Chen, Z. Zhang, S. Chang, Y. Chen, S. Xie, Environ. Pollut. 2018, 242, 426–432. DOI: https://doi.org/10.1016/j.envpol.2018.07.020
- 2O. Gibert, C. Valderrama, M. M. Martínez, R. M. Darbra, J. O. Moncunill, V. Martí, Water 2021, 13, 1493. DOI: https://doi.org/10.3390/w13111493
- 3K. H. Vardhan, P. S. Kumar, R. C. Panda, J. Mol. Liq. 2019, 290, 111197. DOI: https://doi.org/10.1016/j.molliq.2019.111197
- 4P. Schwarzenbach, Annu. Rev. Environ. Resour. 2010, 35, (1), 109–135. DOI: https://doi.org/10.1146/annurev-environ-100809-125342
- 5A. Pohl, Water Air Soil Pollut. 2020, 231, 503. DOI: https://doi.org/10.1007/s11270-020-04863-w
- 6A. Q. Jaradat, D. B. Telfah, R. Ismail, Water Sci. Technol. 2021, 84, 3817–3832. DOI: https://doi.org/10.2166/wst.2021.493
- 7A. Bashir, Environ. Chem. Lett. 2019, 17, 729–754. DOI: https://doi.org/10.1007/s10311-018-00828-y
- 8B. S. Thaçi, S. T. Gashi, Pol. J. Environ. Stud. 2019, 28, 337–341. DOI: https://doi.org/10.15244/pjoes/81268
- 9T. S. Vo, M. M. Hossain, H. M. Jeong, K. Kim, Water 2020, (7), 1–26. DOI: https://repository.upenn.edu/wh2ojournal/vol7/iss1/4
- 10J. Xu, Nat. Commun. 2019, 10, 2440. DOI: https://doi.org/10.1038/s41467-019-10472-x
- 11A. Singh, D. B. Pal, A. Mohammad, A. Alhazmi, S. Haque, T. Yoon, N. Srivastava, V. K. Gupta, Bioresour. Technol. 2022, 343, 126154. DOI: https://doi.org/10.1016/j.biortech.2021.126154
- 12O. S. Amuda, I. A. Amoo, O. O. Ajayi, J. Hazard. Mater. 2006, 129, 69–72. DOI: https://doi.org/10.1016/j.jhazmat.2005.07.078
- 13H. A. Sani, M. B. Ahmad, T. A. Saleh, RSC Adv. 2016, 6, 108819–108827. DOI: https://doi.org/10.1039/C6RA24615J
- 14C. Blöcher, J. Dorda, V. Mavrov, H. Chmiel, N. K. Lazaridis, K. A. Matis, Water Res. 2003, 37, 4018–4026. DOI: https://doi.org/10.1016/S0043-1354(03)00314-2
- 15M. Yunus Pamukoglu, F. Kargi, Process Biochem. 2006, 41, 1047–1054. DOI: https://doi.org/10.1016/j.procbio.2005.11.010
- 16G. Ozdemir, N. Ceyhan, T. Ozturk, F. Akirmak, T. Cosar, Chem. Eng. J. 2004, 102, 249–253. DOI: https://doi.org/10.1016/j.cej.2004.01.032
- 17J. E. Efome, D. Rana, T. Matsuura, C. Q. Lan, Sci. Total Environ. 2019, 674, 355–362. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.187
- 18J. E. Efome, D. Rana, T. Matsuura, C. Q. Lan, Chem. Eng. J. 2018, 352, 737–744. DOI: https://doi.org/10.1016/j.cej.2018.07.077
- 19K. Dânoun, R. Tabit, A. Laghzizil, M. Zahouily, BMC Chem. 2021, 15, 42. DOI: https://doi.org/10.1186/s13065-021-00767-w
- 20D. O. Cooney, Adsorption Design for Wastewater Treatment, Lewis Publishers, CRC Press LLC 1998.
- 21I. Smičiklas, A. Onjia, S. Raičević, D. J Janaćković, M. Mitrić, J. Hazard. Mater. 2008, 152, 876–884. DOI: https://doi.org/10.1016/j.jhazmat.2007.07.056
- 22P. Ranjan Dev, C. Parambil Anand, D. S. Michael, P. Wilson, Mater. Adv. 2022, 3, 7773. DOI: https://doi.org/10.1039/D2MA00620K
10.1039/D2MA00620K Google Scholar
- 23A. Dabrowski, Adv. Colloid Interface Sci. 2001, 93, 135–224. DOI: https://doi.org/10.1016/S0001-8686(00)00082-8
- 24H. Patel, Appl. Water Sci. 2019, 9, 45. DOI: https://doi.org/10.1007/s13201-019-0927-7
- 25F. Kafshgari, A. R. Keshtkar, M. A. Mousavian, J. Environ. Health Sci. Eng. 2013, 4, 14. DOI: https://doi.org/10.1186/s12992-020-0546-y
10.1186/s12992?020?0546?y Google Scholar
- 26N. Miralles, C. Valderrama, I. Casas, M. Martínez, A. Florido, J. Chem. Eng. Data 2010, 55, 3548–3554. DOI: https://doi.org/10.1021/je100200w
- 27H. Patel, Appl. Water Sci. 2019, 9, 45. DOI: https://doi.org/10.1007/s13201-019-0927-7
- 28S. Bai, J. Li, W. Ding, S. Chen, R. Ya, Chemosphere 2022, 296, 134021. DOI: https://doi.org/10.1016/j.chemosphere.2022.134021
- 29Y. Liu, Q. Gao, C. Li, S. Liu, K. Xia, B. Han, C. Zhou, Chem. Eng. J. 2020, 391, 123610. DOI: https://doi.org/10.1016/j.cej.2019.123610
- 30C. E. R. Barquilha, E. S. Cossich, C. R. G. Tavares, E. A. Silva, J. Clean. Prod. 2017, 150, 58–64. DOI: https://doi.org/10.1016/j.jclepro.2017.02.199
- 31S. Bo, J. Luo, Q. An, Z. Xiao, H. Wang, W. Cai, S. Zhai, Z. Li, J. Clean. Prod. 2020, 250, 119585. DOI: https://doi.org/10.1016/j.jclepro.2019.119585
- 32H. Gebretsadik, A. Gebrekidan, L. Demlie, Cogent Chem. 2020, 6, 1720892. DOI: https://doi.org/10.1080/23312009.2020.1720892
- 33X. Li, T. Liu, X. Han; Y. Li, X. Ma, Environ. Technol. Innovat. 2023, 30, 103121. Doi: https://doi.org/10.1016/j.eti.2023.103121
- 34S. Iyer, S. M. Deshmukh, R W. Tapre, Rev. Inorganic Chem. 2024, 2, 1–18. DOI: https://doi.org/10.1515/revic-2024-0079
- 35M. Ofiera, P. Bose, C. Kazner, Water 2024, 16 (3), 511. DOI: https://doi.org/10.3390/w16030511
- 36T. F. Chyad, R. F. Ch Al-Hamadani, Z. A. Hammood, G. A. Ali Mater, Today Proc. 2023, 80, 2706–2711. DOI: https://doi.org/10.1016/j.matpr.2021.07.016
10.1016/j.matpr.2021.07.016 Google Scholar
- 37B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V. K. Gupta, S. H. Puttaiah, N. Marzban, Chem. Eng. J. 2018, 346, 258–270. DOI: https://doi.org/10.1016/j.cej.2018.03.172
- 38A. P. Lim, A. Z. Aris, Biochem. Eng. J. 2014, 87, 50–61. DOI: https://doi.org/10.1016/j.bej.2014.03.019
- 39K. Srikanth, P. King, M. Pujari, Environ. Prog. Sustainable Energy. 2021, 40 (4), 1–8. DOI: https://doi.org/10.1002/ep.13628
- 40W. J. Nascimento Júnior, M. G. C. Silva, M. G. A. Vieira, J. Water Process Eng. 2020, 36, 101294. DOI: https://doi.org/10.1016/j.jwpe.2020.101294;
- 41M. Kavand, E. Fakoor, S. Mahzoon, M. Soleimani, Process Safety Environ. Prot. 2018, 113, 330–342. DOI: https://doi.org/10.1016/j.psep.2017.11.009
- 42A. L. Popovic, J. D. Rusmirovic, Z. Velickovic, T. Kovacevic, A. Jovanovic, I. Cvijetic, A. D. Marinkovic, J. Ind. Eng. Chem. 2021, 93, 302–314. DOI: https://doi.org/10.1016/j.jiec.2020.10.006
- 43X. Lin, Q. Huang, G. Qi, S. Shi, L. Xiong, C. Huang, X. Chen, H. Li, X. Chen, Sep. Purif. Technol. 2017, 174, 222–231. DOI: https://doi.org/10.1016/j.seppur.2016.10.016
- 44M. R. Awual, A. Jyo, T. Ihara, N. Seko, M. Tamada, K. T. Lim, Water Res. 2011, 45 (15), 4592–4600. DOI: https://doi.org/10.1016/j.watres.2011.06.009
- 45H. K. Boparai, M. Joseph, D. M. O'Carroll, J. Hazard. Mater. 2011, 186 (1), 458–465. DOI: https://doi.org/10.1016/j.jhazmat.2010.11.029
- 46Z. Harrache, M. Abbas, T. Aksil, M. Trari, Microchem. J. 2019, 144, 180–189. DOI: https://doi.org/10.1016/j.microc.2018.09.004
- 47H. K. Boparai, M. Joseph, D. M. O'Carroll, J. Hazard. Mater. 2011, 186 (1), 458–465. DOI: https://doi.org/10.1016/j.jhazmat.2010.11.029
- 48S. Pramanik, A. K. Agarwal, K. N. Rai, A. Garg, Ceram. Int. 2007, 33, 419–426. DOI: https://doi.org/10.1016/j.ceramint.2005.10.025
- 49R. R. Rao, H. N. Roopa, T. S. Kannan, J. Mater. Sci. Mater. Med. 1997, 8, 511–518. DOI: https://doi.org/10.1023/A:1018586412270
- 50V. H. Arkin, M. Lakhera, I. Manjubala, U. N Kumar, Int. J. Chem. Tech. Res. 2015, 8, 264–267. DOI: https://doi.org/10.1016/j.carbpol.2018.08.012
- 51R. Koonawoot, C. Saelee, S. Thiansem, S. Punyanitya, Synthesis Control and Characterization of Hydroxyapatite Ceramic Using A Solid State Reaction. Proc. 1st Mae Fah Luang Univ. Int. Conf. 2012. DOI: https://doi.org/10.1016/j.matpr.2020.05.536
10.1016/j.matpr.2020.05.536 Google Scholar
- 52D. Gibbs, R. Lohrmann, L. E. Orgel, J. Mol. Evol. 1980, 5, 7–10. DOI: https://doi.org/10.1007/978-3-662-57978-7_7
10.1007/978?3?662?57978?7_7 Google Scholar
- 53M. E. González-López, C. M. Laureano-Anzaldo, A. A. Pérez-Fonseca, M. Arellano, J. R. Robledo-Ortíz, Separation & Purification Reviews, 2021, 358–372, DOI: https://doi.org/10.1080/15422119.2021.1951757
- 54C. Chen, X. Sun, W. Pan, Y. Hou, R. Liu, X. Jiang, L. Zhang, ACS Sustainable Chem. Eng. 2018, 6, 3862–3869. DOI: https://doi.org/10.1016/j.jare.2021.03.009
- 55F. Ghorbani, A. Zamanian, A. Behnamghader, M. D. Joupari, Mater. Sci. Eng. C 2019, 94, 729–739. DOI: https://doi.org/10.1016/j.msec.2018.10.010
- 56W. Zhou, M. Wang, W. Cheung, B. Guo, D. Jia, J. Mater. Sci. Mater. Med. 2008, 19, 103–110. DOI: https://doi.org/10.1007/s10856-007-3156-9
- 57T. Pradeesh, M. Sunny, H. Varma, P. Ramesh, Bull. Mater. Sci. 2005, 28, 383–390. DOI: https://doi.org/10.1007/BF02711223
- 58X. Zhao, J. Guan, Y. Zhang, Q. Huang, Y. Guo, S. Yi, J. Eur. Ceram. Soc. 2024, 44 (12), 7383–7397. DOI: https://doi.org/10.1016/j.jeurceramsoc.2024.04.045
- 59D. Anandan, A. Kumar, A. K. Jaiswal, J. Mech. Behav. Biomed. Mater. 2023, 148, 106200. DOI: https://doi.org/10.1016/j.jmbbm.2023.106200
- 60A. El Gaidoumi, A. Arrahli, A. Loqman, F. Baragh, B. El Bali, A. Kherbeche, Silicon 2022, 14, 5401–5414. DOI: https://doi.org/10.1007/s12633-021-01275-1
- 61M. Zouheir, O. Assila, K. Tanji, A. El Gaidoumi, J. Araña, J. M. Doña Rodríguez, J.-H. Smått, T.-P. Huynh, A. Kherbeche, Nano Futures 2021, 5 (2), 025004. DOI: https://doi.org/10.1088/2399-1984/abfb7d
- 62Y. Cao, J. Li, X. Li, Y. Xie, Q. Feng, X. Zhang, X. Tuo, Mater. Today Commun. 2024, 39, 108627. DOI: https://doi.org/10.1016/j.mtcomm.2024.108627
- 63Y. Wibisono, S. R. Ummah, M. B. Hermanto, G. Djoyowasito, A. Noviyanto, Results Eng. 2024, 21, 101781. DOI: https://doi.org/10.1016/j.rineng.2024.101781
- 64R. El Kaim Billah, I. Ayouch, Y. Abdellaoui, Z. Kassab, M. A. Khan, M. Agunaou, A. Soufiane, M. Otero, B.-H. Jeon, Polymers 2023, 15, 1524. DOI: https://doi.org/10.3390/polym15061524
- 65A. A. Sery, H. A. El-Boraey, S. A. Abo-Elenein, R. M. ElKorashey, Water Sci. 2021, 35, 154–164. DOI: https://doi.org/10.1080/23570008.2021.1994242
10.1080/23570008.2021.1994242 Google Scholar
- 66A. Anmin, L. Tong, L. Ming, C. Chengkang, L. Huiqin, M. Dali, Appl. Catal. B 2006, 63, 41–44. DOI: https://doi.org/10.1016/j.apcatb.2006.02.003
- 67M. S. Fernando, A. K. D. V. K. Wimalasiri, K. Dziemidowicz, G. R. Williams, K. R. Koswattage, D. P. Dissanayake, K. M. N. de Silva, R. M. de Silva, ACS Omega 2021, 6, 8517–8530. DOI: https://doi.org/10.1021/acsomega.0c06076
- 68X. Zhao, Y. Zhang, Y. Guo, H. Yuan, J. Guan, Q. Huang, Mater. Today Commun. 2024, 38, 108116. DOI: https://doi.org/10.1016/j.mtcomm.2024.108116
- 69M. Sadat-Shojai, A. Keshavarzi, M. Asadnia, J. Sol–Gel Sci. Technol. 2023, 108, 466–476. DOI: https://doi.org/10.1007/s10971-023-05788-5
- 70 Handbook of Ionic Substituted Hydroxyapatites (Eds: A. S. Khan, A. A. Chaudhry), Elsevier Ltd. Woodhead Publishing, 2020. DOI: https://doi.org/10.1016/C2018-0-00399-0
- 71P. L. Hariani, F. Riyanti, F. Fatma, A. Rachmat, A. Herbanu, Molekul 2020, 15, 130. DOI: https://doi.org/10.20884/1.jmolekul.2020.15.2.1475
- 72K. Itatani, T. Tsugawa, T. Umeda, Y. Musha, I. J. Davies, S. Koda, J. Ceram. Soc. Japan 2010, 118, 462–466. DOI: https://doi.org/10.2109/jcersj.118.462
- 73E. Allahkarami, E. Allahkarami, A. Azadmehr, Environ. Sci. Pollut. Res. 2023, 30, 105504–105521. DOI: https://doi.org/10.1007/s11356-023-29808-8
- 74W. Purwaningrum, F. Riyanti, M. Said, P. L. Hariani, A. S. Handayan, Indonesian J. Fundam. Appl. Chem. 2021, 6, 46–52. DOI: https://doi.org/10.24845/ijfac.v6.i2.46
- 75M. Bahrami, M. J. Amiri, F. Dehkhodaie, Int. J. Environ. Anal. Chem. 2021, 101, 2150–2170. DOI: https://doi.org/10.1080/03067319.2019.1700237
- 76S. Marran, K. Dânoun, Y. Essamlali, S. Aboulhrouz, S. Sair, O. Amadine, I. Jioui, A. Rhihil, M. Zahouily, RSC Adv. 2023, 13, 31935–31947. DOI: https://doi.org/10.1039/D3RA04974D
- 77P. Xuchao, H. Yong, D. T. Semirumi, F. Zhong, R. Rezaie, Int. J. Biol. Macromol. 2023, 246, 125630. DOI: https://doi.org/10.1016/j.ijbiomac.2023.125630
- 78A. A. Hamad, M. S. Hassouna, T. I. Shalaby, M. F. Elkady, M. A. Abd Elkawi, H. A. Hamad, Int. J. Biol. Macromol. 2020, 151, 1299–1313. DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.176
- 79K. Sangeetha, G. Vidhya, G. Vasugi, E. K. Girija, J. Environ. Chem. Eng. 2018, 6, 1118–1126. DOI: https://doi.org/10.1016/j.jece.2018.01.018
- 80M. S. Fernando, A. K. D. V. K. Wimalasiri, K. Dziemidowicz, G. R. Williams, K. R. Koswattage, D. P. Dissanayake, K. M. N. de Silva, R. M. de Silva, ACS Omega 2021, 6, 8517–8530. DOI: https://doi.org/10.1021/acsomega.1c00316
- 81D. A. El-Nagar, S. A. Massoud, S. H. Ismail, Arabian J. Chem. 2020, 13, 7695–7706. DOI: https://doi.org/10.1016/j.arabjc.2020.09.005
- 82D. N. Thanh, P. Novak, J. Vejpravova, H. N. Vu, J. Lederer, T. Munshi, J. Magn. Magn. Mater. 2018, 456, 451–460. DOI: https://doi.org/10.1016/j.jmmm.2017.11.064
- 83Y. Li, S. Wang, Y. Zhang, R. Han, W. Wei, J. Mol. Liq. 2017, 247, 171–181. DOI: https://doi.org/10.1016/j.molliq.2017.09.110
- 84 Handbook of Advanced Water Treatment (Eds: G. Mika Sillanpää), Elsevier, 2020. DOI: https://doi.org/10.1016/B978-0-12-819216-0.00001-1
- 85Y.-Y. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang, S.-M. Yang, J. Solid State Chem. 2018, 261, 53–61. DOI: https://doi.org/10.1016/j.jssc.2018.02.010
- 86A. Pooladi, R. Bazargan-Lari, J. Mater. Res. Technol. 2020, 9, 14841–14852. DOI: https://doi.org/10.1016/j.jmrt.2020.10.057
- 87O. V. Sinitsyna, A. G. Veresov, E. S. Kovaleva, Y. V. Kolenko, V. I. Putlyaev, Y. D. Tretyakova, Russ. Chem. Bull. Int. Ed. 2005, 54, 79–86. DOI: https://doi.org/10.1007/s11172-005-0220-9
- 88M. Wang, H. Chen, W. Shih, H. Chang, Ceram. Int. 2015, 41, 2999–3008. DOI: https://doi.org/10.1016/j.ceramint.2014.10.135
- 89M. Quadros, M. Momin, G. Verma, Mater. Sci. Eng. C. 2021, 121, 1–17. DOI: https://doi.org/10.1016/j.msec.2021.111875
10.1016/j.msec.2021.111875 Google Scholar
- 90S. C. Cox, R. I. Walton, K. K. Mallick, 2015, 37–47. DOI: https://doi.org/10.1080/09593330.2023.2173087
10.1080/09593330.2023.2173087 Google Scholar
- 91V. H. Arkin, M. Lakhera, I. Manjubala, U. N. Kumar, Int. J. ChemTech Res. 2015, 8, 264–267. DOI: https://doi.org/10.1016/j.cis.2023.102890
- 92S. Pramanik, A. K. Agarwal, K. N. Rai, A. Garg, Ceram. Int. 2007, 33, 419–426. DOI: https://doi.org/10.1016/j.ceramint.2005.10.025
- 93H. R. Javadinejad, R. Ebrahimi-Kahrizsangi, Int. J. Chem. Kinet. 2021, 53, 583–595. DOI: https://doi.org/10.1002/kin.21467
- 94Q. Peng, H. Tang, Z. Tang, Z. Peng, In Characterization of Minerals, Metals, and Materials 2019 (Eds: B. Li, et al.), The Minerals, Metals & Materials Series, Springer, Cham 2019. DOI: https://doi.org/10.1007/978-3-030-05749-7_23
- 95A. Fihri, C. Len, R. S. Varma, A. Solhy, Coord. Chem. Rev. 2017, 347, 48–76. DOI: https://doi.org/10.1016/j.ccr.2017.06.009
- 96X. Ting, L. Jia, Q. Li, Y. Zhang, W. Zhu, Sep. Purif. Technol. 2022, 299, 121776. DOI: https://doi.org/10.1016/j.seppur.2022.121776
10.1016/j.seppur.2022.121776 Google Scholar
- 97K. Bisaria, S. Sinha, R. Singh, H. M. N. Iqbal, Chemosphere 2021, 284, 131263. DOI: https://doi.org/10.1016/j.chemosphere.2021.131263
- 98H. Zhongguan, Z. Qiang, L. Sen, G. Zhang, A. Nadeem, Y. Ge, Chemosphere 2023, 337, 139064. DOI: https://doi.org/10.1016/j.chemosphere.2023.139064