Ionic Liquid Based Treatment – A Potential Strategy to Modify Bacterial Cellulose
Muneeba Munir
COMSATS University Islamabad, Interdisciplinary Research Centre in Biomedical Materials, Lahore Campus, 54000 Lahore, Pakistan
COMSATS University Islamabad, Department of Chemistry, Lahore Campus, 54000 Lahore, Pakistan
Search for more papers by this authorCorresponding Author
Nawshad Muhammad
Khyber Medical University, Department of Dental Materials, Basic Medical Sciences, Peshawar, Pakistan
Correspondence: Faiza Sharif ([email protected]), Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan. Department of Dental Materials, Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.Search for more papers by this authorMaliha Uroos
University of The Punjab, Centre for Research in Ionic Liquids, School of Chemistry, Quaid-e-Azam Campus, 54000 Lahore, Pakistan
Search for more papers by this authorWaleed Mustafa
COMSATS University Islamabad, Interdisciplinary Research Centre in Biomedical Materials, Lahore Campus, 54000 Lahore, Pakistan
Istanbul Medipol University, Department of Biomedical Engineering, School of Engineering and Natural Sciences, 34810 Istanbul, Turkey
Search for more papers by this authorCorresponding Author
Faiza Sharif
COMSATS University Islamabad, Interdisciplinary Research Centre in Biomedical Materials, Lahore Campus, 54000 Lahore, Pakistan
Correspondence: Faiza Sharif ([email protected]), Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan. Department of Dental Materials, Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.Search for more papers by this authorMuneeba Munir
COMSATS University Islamabad, Interdisciplinary Research Centre in Biomedical Materials, Lahore Campus, 54000 Lahore, Pakistan
COMSATS University Islamabad, Department of Chemistry, Lahore Campus, 54000 Lahore, Pakistan
Search for more papers by this authorCorresponding Author
Nawshad Muhammad
Khyber Medical University, Department of Dental Materials, Basic Medical Sciences, Peshawar, Pakistan
Correspondence: Faiza Sharif ([email protected]), Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan. Department of Dental Materials, Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.Search for more papers by this authorMaliha Uroos
University of The Punjab, Centre for Research in Ionic Liquids, School of Chemistry, Quaid-e-Azam Campus, 54000 Lahore, Pakistan
Search for more papers by this authorWaleed Mustafa
COMSATS University Islamabad, Interdisciplinary Research Centre in Biomedical Materials, Lahore Campus, 54000 Lahore, Pakistan
Istanbul Medipol University, Department of Biomedical Engineering, School of Engineering and Natural Sciences, 34810 Istanbul, Turkey
Search for more papers by this authorCorresponding Author
Faiza Sharif
COMSATS University Islamabad, Interdisciplinary Research Centre in Biomedical Materials, Lahore Campus, 54000 Lahore, Pakistan
Correspondence: Faiza Sharif ([email protected]), Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan. Department of Dental Materials, Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.Search for more papers by this authorAbstract
The constant need for advanced materials led by modern research continues the exploitation of old remedies and innovation to find new solutions. The use of ionic liquids (ILs) as solvents has revolutionized modern chemical research. The non-toxic green technology has inspired new paradigms in chemical reactions and synthesis. Developing nontoxic materials for industrial and biomedical applications has endorsed the use of ILs in synthesis and fabrication. In terms of biomedical materials, the exploration for novel technologies to deal with chronic and nonhealing injuries desires degradable materials. One of the vastly used biomaterials is cellulose, which is nondegradable on its own unless digested by special enzymes produced by bacteria in nature. Bacterial cellulose (BC) is a naturally occurring more refined and purified form of cellulose which again is nondegradable on its own. Looking for technologies that can modify the BC in situ or ex situ is a challenge. This review is bound to give insight into the current scientific research being conducted to render BC degradable for biomedical applications. The data has been collected through Clarivate analysis, Google search, PubMed Central Identifier (PMCID), and Research Gate. The lack of available literature on this topic allowed us to include all the articles related to the subject as old as 1988 onwards.
References
- 1 V. Thiruvengadam, S. Vitta, Cellulose 2017, 24, 3341–3351. DOI: https://doi.org/10.1007/s10570-017-1350-6
- 2 L. Urbina, M. Á. Corcuera, N. Gabilondo, A. Eceiza, A. Retegi, Cellulose 2021, 28, 8229–8253. DOI: https://doi.org/10.1007/s10570-021-04020-4
- 3
J. K. Park, J. Y. Jung, T. Khan, in Handbook of Hydrocolloids, 2nd Edition (Eds: G. O. Phillips, P. A. Williams), Woodhead Publishing, Swaston, UK
2009, 724–739.
10.1533/9781845695873.724 Google Scholar
- 4 F. Esa, S. M. Tasirin, N. A. Rahman, Agric. Agric. Sci. Procedia 2014, 2, 113–119. DOI: https://doi.org/10.1016/j.aaspro.2014.11.017
- 5 A. N. Nakagaito, S. Iwamoto, H. Yano, Appl. Phys. A. 2005, 80, 93–97. DOI: https://doi.org/10.1007/s00339-004-2932-3
- 6 M. Moosavi-Nasab, A. Yousefi, Iran. J. Biotechnol. 2011, 9 (2), 94–101.
- 7 D. Byrom, Biomaterials: Novel Materials from Biological Sources, Palgrave Macmillan, London 1991, 365.
- 8 J. Ahmed, M. Gultekinoglu, M. Edirisinghe, Biotechnol. Adv. 2020, 41, 107549. DOI: https://doi.org/10.1016/j.biotechadv.2020.107549
- 9 B. V. Mohite, S. V. Patil, Physical, Carbohydr. Polym. 2014, 106, 132–141. DOI: https://doi.org/10.1016/j.carbpol.2014.02.012
- 10 S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, M. Uryu, J. Mater. Sci. 1989, 24, 3141–3145. DOI: https://doi.org/10.1007/BF01139032
- 11 M. Ul-Islam, Curr. Pharm. Des. 2019, 25, 3664–3671. DOI: https://doi.org/10.2174/1381612825999191011104722
- 12 M. Ul-Islam, S. Khan, M. W. Ullah, J. K. Park, Int. J. Biol. Macromol. 2019, 137, 247–252. DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.232
- 13 S. Khan, M. Ul-Islam, M. Ikram, S. U. Islam, M. W. Ullah, M. Israr, J. H. Jang, S. Yoon, J. K. Park, Int. J. Biol. Macromol. 2018, 117, 1200–1210. DOI: https://doi.org/10.1016/j.ijbiomac.2018.06.044
- 14 N. I. De Iannino, R. O. Couso, M. A. Dankert, Microbiology 1988, 134, 1731–1736. DOI: https://doi.org/10.1099/00221287-134-6-1731
- 15 R. M. Brown, Food Hydrocolloids 1987, 1, 345–351. DOI: https://doi.org/10.1016/S0268-005X(87)80024-3
- 16 A. Khalid, H. Ullah, M. Ul-Islam, R. Khan, S. Khan, F. Ahmad, T. Khan, F. Wahid, RSC Adv. 2017, 7, 47662–47668. DOI: https://doi.org/10.1039/C7RA06699F
- 17 N. Shah, M. Ul-Islam, W. A. Khattak, J. K. Park, Carbohydr. Polym. 2013, 98, 1585–1598. DOI: https://doi.org/10.1016/j.carbpol.2013.08.018
- 18 M. W. Ullah, M. Ul-Islam, S. Khan, Y. Kim, J. K. Park, Carbohydr. Polym. 2015, 132, 286–294. DOI: https://doi.org/10.1016/j.carbpol.2015.06.037
- 19 M. Ul-Islam, T. Khan, J. K. Park, Carbohydr. Polym. 2012, 88, 596–603. DOI: https://doi.org/10.1016/j.carbpol.2012.01.006
- 20 W. Czaja, D. Romanovicz, R. M. Brown, Cellulose 2004, 11, 403–411. DOI: https://doi.org/10.1023/B:CELL.0000046412.11983.61
- 21
S. Swingler, A. Gupta, W. Heaselgrave, M. Kowalczuk, I. Radecka, Access Microbiol.
2019, 1, 19. DOI: https://doi.org/10.1099/acmi.amrmeds2019.po0012
10.1099/acmi.amrmeds2019.po0012 Google Scholar
- 22 D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Prog. Polym. Sci. 2001, 26, 1561–1603. DOI: https://doi.org/10.1016/S0079-6700(01)00021-1
- 23 M. M. Rahman, A. N. Netravali, ACS Macro Lett. 2016, 5, 1070–1074. DOI: https://doi.org/10.1021/acsmacrolett.6b00621
- 24 W. Shao, S. Wang, X. Liu, H. Liu, J. Wu, R. Zhang, H. Min, M. J. Huang, RSC Adv. 2016, 6, 3068–3073. DOI: https://doi.org/10.1039/C5RA23409C
- 25 S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, M. Uryu, J. Mater. Sci. 1989, 24, 3141–3145. DOI: https://doi.org/10.1007/BF01139032
- 26 X. Feng, N. Ullah, X. Wang, X. Sun, C. Li, Y. Bai, L. Chen, Z. Li, J. Food Sci. 2015, 80, E2217–E2227. DOI: https://doi.org/10.1111/1750-3841.13010
- 27 S. Schrecker, P. Gostomski, Biotechnol. Lett. 2005, 27, 1435–1438. DOI: https://doi.org/10.1007/s10529-005-1465-y
- 28 C. Zhong, Front. Bioeng. Biotechnol. 2020, 8, 605374. DOI: https://doi.org/10.3389/fbioe.2020.605374
- 29 M. Szymańska-Chargot, J. Cybulska, A. Zdunek, Sensors 2011, 11, 5543–5560. DOI: https://doi.org/10.3390/s110605543
- 30 N. Tahara, M. Tabuchi, K. Watanabe, H. Yano, Y. Morinaga, F. Yoshinaga, Biosci. Biotechnol. Biochem. 1997, 61, 1862–1865. DOI: https://doi.org/10.1271/bbb.61.1862
- 31 D. Klemm, B. Heublein, H. P. Fink, A. Bohn, Angew. Chem. Int. Ed. 2005, 44, 3358–3393. DOI: https://doi.org/10.1002/anie.200460587
- 32 W. Tang, S. Jia, Y. Jia, H. Yang, World J. Microbiol. Biotechnol. 2010, 26,125–131. DOI: https://doi.org/10.1007/s11274-009-0151-y
- 33 O. S. Manoukian, N. Sardashti, T. Stedman, K. Gailiunas, A. Ojha, A. Penalosa, C. Mancuso, M. Hobert, S. G. Kumbar, Biomaterials for Tissue Engineering and Regenerative Medicine, in Encyclopedia of Biomedical Engineering (Ed: R. Narayan), Elsevier, Amsterdam 2019, 462–482. DOI: https://doi.org/10.1016/B978-0-12-801238-3.64098-9
- 34
F. Sharif, N. Muhammad, T. Zafar, in Biofibers and Biopolymers for Biocomposites: Synthesis, Characterization and Properties (Eds: A. Khan, S. Mavinkere Rangappa, S. Siengchin, A. M. Asiri), Springer, Cham
2020, 229–246.
10.1007/978-3-030-40301-0_11 Google Scholar
- 35 A. S. Amarasekara, B. Wiredu, Ind. Eng. Chem. Res. 2011, 50, 12276–12280. DOI: https://doi.org/10.1021/ie200938h
- 36 K. Ginjupalli, G. V. Shavi, R. K. Averineni, M. Bhat, N. Udupa, P. N. Upadhya, Polym. Degrad. Stab. 2017, 144, 520–535. DOI: https://doi.org/10.1016/j.polymdegradstab.2017.08.024
- 37
M. S. Hasnain, S. A. Ahmad, N. Chaudhary, M. N. Hoda, A. K. Nayak, in Applications of Nanocomposite Materials in Orthopedics (Eds: Inamuddin, A. M. Asiri, A. Mohammad), Woodhead Publishing, Swaston, UK
2019, 1–37.
10.1016/B978-0-12-813740-6.00001-6 Google Scholar
- 38 B. D. Ulery, L. S. Nair, C. T. Laurencin, J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 832–864. DOI: https://doi.org/10.1002/polb.22259
- 39 C. Boisset, C. Fraschini, M. Schülein, B. Henrissat, H. Chanzy, Appl. Environ. Microbiol. 2000, 66, 1444–1452. DOI: https://doi.org/10.1128/AEM.66.4.1444-1452.2000
- 40 B. Balakrishnan, M. Mohanty, P. Umashankar, A. J. B. Jayakrishnan, Biomaterials 2005, 26, 6335–6342. DOI: https://doi.org/10.1016/j.biomaterials.2005.04.012
- 41 Y. Hu, J. M. Catchmark, Acta Biomater. 2011, 7, 2835–2845. DOI: https://doi.org/10.1016/j.actbio.2011.03.028
- 42 M. Hamid, V. Babaeipour, M. Imani, A. Bahrami, Iran. J. Chem. Chem. Eng. 2019, 38, 9–21. DOI: https://doi.org/10.30492/ijcce.2019.30928
- 43 S. K. Singh, A. W. Savoy, J. Mol. Liq. 2020, 297, 112038. DOI: https://doi.org/10.1016/j.molliq.2019.112038
- 44 J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508–3576. DOI: https://doi.org/10.1021/cr1003248
- 45 T. Welton, Chem. Rev. 1999, 99, 2071–2084. DOI: https://doi.org/10.1021/cr980032t
- 46
P. K. Kumar, M. M. Kabanda, I. Bahadur, P. Venkatesu, E. E. Ebenso, J. Mol. Liq.
2022, 360, 119554. DOI: https://doi.org/10.1016/j.molliq.2022.119554
10.1016/j.molliq.2022.119554 Google Scholar
- 47 V. Thamke, P. Singh, S. Pal, M. Chaudhary, K. Kumari, I. Bahadur, R. S. Varma, J. Environ. Chem. Eng. 2022, 10, 107303. DOI: https://doi.org/10.1016/j.jece.2022.107303
- 48 M. M. Kabanda, I. Bahadur, J. Mol. Liq. 2022, 360, 119418. DOI: https://doi.org/10.1016/j.molliq.2022.119418
- 49 Y. Gao, W. Zhang, L. Li, Z. Wang, Y. Shu, J. Wang, Chem. Eng. J. 2023, 452, 139248. DOI: https://doi.org/10.1016/j.cej.2022.139248
- 50 R. A. Sheldon, Chem. Eur. J. 2016, 22, 12984–12999. DOI: https://doi.org/10.1002/chem.201601940
- 51 K. S. Egorova, E. G. Gordeev, V. P. Ananikov, Chem. Rev. 2017, 117, 7132–7189. DOI: https://doi.org/10.1021/acs.chemrev.6b00562
- 52
N. V. Igareta, R. Tachibana, D. C. Spiess, R. L. Peterson, T. R. Ward, Faraday Discuss., in press. DOI: https://doi.org/10.1039/D3FD00034F
10.1039/D3FD00034F Google Scholar
- 53 J. H. Davis, K. J. Forrester, Tetrahedron Lett. 1999, 40, 1621–1622. DOI: https://doi.org/10.1016/S0040-4039(99)00025-8
- 54 R. Ferraz, L. C. Branco, C. Prudêncio, J. P. Noronha, Ž. Petrovski, ChemMedChem 2011, 6, 975–985. DOI: https://doi.org/10.1002/cmdc.201100082
- 55 A. M. Asim, M. Uroos, S. Naz, M. Sultan, G. Griffin, N. Muhammad, A. S. Khan, J. Mol. Liq. 2019, 287, 110943. DOI: https://doi.org/10.1016/j.molliq.2019.110943g
- 56 J. Chen, F. Xie, X. Li, L. Chen, Green Chem. 2018, 20, 4169–4200. DOI: https://doi.org/10.1039/C8GC01120F
- 57 E. Avirdi, H. K. Paumo, B. P. Kamdem, M. B. Singh, K. Kumari, L. M. Katata-Seru, I. Bahadur, J. Mol. Liq. 2023, 369, 120935. DOI: https://doi.org/10.1016/j.molliq.2022.120935
- 58 D. Dorjnamjin, M. Ariunaa, Y. K. Shim, Int. J. Mol. Sci. 2008, 9, 807–820. DOI: https://doi.org/10.3390/ijms9050807
- 59 D. Li, X. Fei, K. Wang, L. Xu, Y. Wang, J. Tian, Y. Li, J. Mater. Chem. B. 2021, 9, 6844–6855. DOI: https://doi.org/10.1039/D1TB01257F
- 60 P. Maneewattanapinyo, A. Yeesamun, F. Watthana, K. Panrat, W. Pichayakorn, J. Suksaeree, AAPS PharmSciTech 2019, 20, 322. DOI: https://doi.org/10.1208/s12249-019-1545-2
- 61 K. Kumari, A. Kumar, I. Bahadur, P. Singh, J. Phys. Org. Chem. 2021, 34, e4273. DOI: https://doi.org/10.1002/poc.4273
- 62 A. H. Bhat, I. Khan, M. A. Usmani, R. Umapathi, S. M. Z. Al-Kindy, Int. J. Biol. Macromol. 2019, 129, 750–777. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.190
- 63
V. S. Raghuwanshi, G. Garnier, Front. Chem.
2019, 30, 7, 535. DOI: https://doi.org/10.3389/fchem.2019.00535
10.3389/fchem.2019.00535 Google Scholar
- 64 R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974–4975. DOI: https://doi.org/10.1021/ja025790m
- 65 T. Heinze, K. Schwikal, S. Barthel, Macromol. Biosci. 2005, 5, 520–525. DOI: https://doi.org/10.1002/mabi.200500039
- 66 B. Lindman, B. Medronho, L. Alves, C. Costa, H. Edlund, M. Norgren, Phys. Chem. Chem. Phys. 2017, 19, 23704–23718. DOI: https://doi.org/10.1039/C7CP02409F
- 67 H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519–1537. DOI: https://doi.org/10.1039/C2CS15311D
- 68 D. M. Rein, R. Khalfin, N. Szekely, Y. Cohen, Carbohydr. Polym. 2014, 112, 125–133. DOI: https://doi.org/10.1016/j.carbpol.2014.05.059
- 69 N. Mqoni, S. Singh, I. Bahadur, H. Hashemi, D. Ramjugernath, Results. Eng. 2022, 15, 100484. DOI: https://doi.org/10.1016/j.rineng.2022.100484
- 70 K. Okushita, E. Chikayama, J. Kikuchi, Biomacromolecules 2012, 13, 1323–1330. DOI: https://doi.org/10.1021/bm300537k
- 71 A. Striegel, Carbohydr. Polym. 1997, 34, 267–274. DOI: https://doi.org/10.1016/S0144-8617(97)00101-X
- 72 G. D. Lima, M. R. Sierakowski, P. Faria-Tischer, C. A. Tischer, Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride, Anais do 10o Congresso Brasileiro de Polímeros, Foz do Iguaçu, October 2009.
- 73 L. Peng, H. Feng, in Proc. of 2009 Int. Conf. on Advanced Fibers and Polymer Materials, Curran Associates, Red Hook, NY 2009, 940–942.
- 74 R. C. Remsing, R. P. Swatloski, R. D. Rogers, G. Moyna, Chem. Commun. 2006, 12, 1271–1273. DOI: https://doi.org/10.1039/B600586C
- 75 B. Medronho, B. Lindman, Adv. Colloid Interface Sci. 2015, 222, 502–508. DOI: https://doi.org/10.1016/j.cis.2014.05.004
- 76 Y. Li, J. Wang, X. Liu, S. Zhang, Chem. Sci. 2018, 9, 4027–4043. DOI: https://doi.org/10.1039/C7SC05392D
- 77 G. Alfassi, D. M. Rein, Y. Cohen, J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 2458–2462. DOI: https://doi.org/10.1002/pola.29220
- 78 J. M. Bernal-García, A. Guzmán-López, A. Cabrales-Torres, A. Estrada-Baltazar, G. A. Iglesias-Silva, J. Chem. Eng. Data 2008, 53, 1024–1027. DOI: https://doi.org/10.1021/je700671t
- 79 V. S. Raghuwanshi, Y. Cohen, G. Garnier, C. J. Garvey, G. Garnier, Macromolecules 2021, 54, 6982–9.
- 80 H. Suryanto, T. Sutrisno, U. Yanuhar, R. Wulandari, Morphology and structure of bacterial cellulose film after ionic liquid treatment, in Journal of Physics: Conference Series, IOP Publishing, 2020, pp. 012028.
- 81 T. A. Sutrisno, H. Suryanto, R. Wulandari, M. Muhajir, Effects of chemical treatment on the structure and morphology of bacterial cellulose film, in AIP Conference Proceedings, AIP Publishing LLC, 2019, pp. 040030.
- 82 A. D. J. C. French, Idealized powder diffraction patterns for cellulose polymorphs, Cellul. 2014, 21, 885–896. DOI: https://doi.org/10.1021/acs.macromol.1c00833
- 83
S. A. Sardjono, H. Suryanto, Aminnudin, M. Muhajir, AIP Conf. Proc.
2019, 2120, 080015. DOI: https://doi.org/10.1063/1.5115753
10.1063/1.5115753 Google Scholar
- 84 K. E. Gutowski, G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2003, 125, 6632–6633. DOI: https://doi.org/10.1021/ja0351802
- 85 L. C. Tomé, M. G. Freire, L. P. N. Rebelo, A. J. D. Silvestre, C. P. Neto, I. M. Marrucho, C. S. R. Freire, Green Chem. 2011, 13, 2464–2470. DOI: https://doi.org/10.1039/C1GC15432J
- 86 E. Trovatti, N. H. Silva, I. F. Duarte, C. F. Rosado, I. F. Almeida, P. Costa, C. S. Freire, A. J. Silvestre, C. P. Neto, Biomacromolecules 2011, 12, 4162–4168. DOI: https://doi.org/10.1021/bm201303r
- 87 S. Taokaew, W. Kriangkrai, Polysaccharides 2022, 3, 671–691. DOI: https://doi.org/10.3390/polysaccharides3040039
- 88 B. Wei, G. Yang, F. Hong, Carbohydr. Polym. 2011, 84, 533–538. DOI: https://doi.org/10.1016/j.carbpol.2010.12.017
- 89 J. Qin, Z. Qin, X. Yin, Q. Zeng, L. Zhu, BioResources 2015, 10, 2185–2194. DOI: https://doi.org/10.15376/biores.10.2.2185-2194
- 90 M. Hussain, T. Liebert, T. Heinze, Polym. News 2004, 29, 14–17. DOI: https://doi.org/10.1080/00323910490980976
- 91 K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler, M. C. Shelton, D. Tindall, Progr. Polym. Sci. 2001, 26, 1605–1688. DOI: https://doi.org/10.1016/S0079-6700(01)00027-2
- 92 S. Fischer, K. Thümmler, K. Pfeiffer, T. Liebert, T. Heinze, Cellulose 2002, 9, 293–300. DOI: https://doi.org/10.1023/A:1021121909508
- 93 J. Wu, J. Zhang, H. Zhang, J. He, Q. Ren, M. Guo, Biomacromolecules 2004, 5, 266–268. DOI: https://doi.org/10.1021/bm034398d
- 94 R. Swatloski, R. Rogers, J. J. U. Holbrey (University of Alabama), WO Patent , 2003. 2003 029 329 A2
- 95 H. Zhang, J. Wu, J. Zhang, J. He, Macromolecules 2005, 38, 8272–8277. DOI: https://doi.org/10.1021/ma0505676
- 96 M. A. Smirnov, V. S. Fedotova, M. P. Sokolova, A. L. Nikolaeva, V. Y. Elokhovsky, M. Karttunen, Polymers 2021, 13, 3044. DOI: https://doi.org/10.3390/polym13183044
- 97 S. Barthel, T. Heinze, Green Chem. 2006, 8, 301–306. DOI: https://doi.org/10.1039/B513157J
- 98 A. P. Abbott, T. J. Bell, S. Handa, B. Stoddart, Green Chem. 2005, 7, 705–707. DOI: https://doi.org/10.1039/B511691K
- 99 H. J. Kim, J. N. Jin, E. Kan, K. J. Kim, S. H. Lee, Biotechnol. Bioprocess Eng. 2017, 22, 89–94. DOI: https://doi.org/10.1007/s12257-016-0381-4
- 100 Y. Wang, Synthesis and characterisation of regioselective cellulose derivatives, Dissertation, Friedrich-Schiller-Universität Jena 2013.
- 101 T. Elschner, M. Kötteritzsch, T. Heinze, Macromol. Biosci. 2014, 14, 161–165. DOI: https://doi.org/10.1002/mabi.201300345
- 102
Y. T. Lin, C. J. Yu, L. Zhu, X. Q. Yin, B. S. Lao, Q. Lin, Appl. Mech. Mater.
2013, 320, 478–482. DOI: https://doi.org/10.4028/www.scientific.net/AMM.320.478
10.4028/www.scientific.net/AMM.320.478 Google Scholar
- 103 S. Sowmiah, V. Srinivasadesikan, M.-C. Tseng, Y.-H. Chu, Molecules 2009, 14, 3780–3813. DOI: https://doi.org/10.3390/molecules14093780
- 104 G. Ebner, S. Schiehser, A. Potthast, T. Rosenau, Tetrahedron Lett. 2008, 49, 7322–7324. DOI: https://doi.org/10.1016/j.tetlet.2008.10.052
- 105 T. Erdmenger, C. Haensch, R. Hoogenboom, U. S. Schubert, Macromol. Biosci. 2007, 7, 440–445. DOI: https://doi.org/10.1002/mabi.200600253
- 106 T. Heinze, S. Dorn, M. Schöbitz, T. Liebert, S. Köhler, F. Meister, Macromol. Symp. 2008, 262, 8–22. DOI: https://doi.org/10.1002/masy.200850202
- 107 K. Schlufter, H. P. Schmauder, S. Dorn, T. Heinze, Macromol. Rapid Commun. 2006, 27, 1670–1676. DOI: https://doi.org/10.1002/marc.200600463
- 108 S. Swingler, A. Gupta, H. Gibson, M. Kowalczuk, W. Heaselgrave, I. Radecka, Polymers 2021, 13, 412. DOI: https://doi.org/10.3390/polym13030412
- 109 S. Torgbo, P. Sukyai, Polym. Degrad. Stab. 2020, 179, 109232. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109232
- 110 A. Shpichka, D. Butnaru, E. A. Bezrukov, R. B. Sukhanov, A. Atala, V. Burdukovskii, Y. Zhang, P. Timashev, Stem Cell Res. Ther. 2019, 10, 94. DOI: https://doi.org/10.1186/s13287-019-1203-3
- 111 W. Sajjad, T. Khan, M. Ul-Islam, R. Khan, Z. Hussain, A. Khalid, F. Wahid, Carbohydr. Polym. 2019, 206, 548–556. DOI: https://doi.org/10.1016/j.carbpol.2018.11.023
- 112 F. G. Torres, S. Commeaux, O. P. Troncoso, J. Funct. Biomater. 2012, 3, 864–878. DOI: https://doi.org/10.3390/jfb3040864
- 113 E. S. Morais, N. H. C. S. Silva, T. E. Sintra, S. A. O. Santos, B. M. Neves, I. F. Almeida, P. C. Costa, I. Correia-Sá, S. P. M. Ventura, A. J. D. Silvestre, M. G. Freire, C. S. R. Freire, Carbohydr. Polym. 2019, 206, 187–197. DOI: https://doi.org/10.1016/j.carbpol.2018.10.051
- 114 I. Marrucho, L. Branco, L. P. Rebelo, Annu. Rev. Chem. Biomol. Eng. 2014, 5, 527–546. DOI: https://doi.org/10.1146/annurev-chembioeng-060713-040024
- 115 B. Lu, T. Liu, H. Wang, C. Wu, H. Chen, Z. Liu, J. Zhang, J. Mol. Liq. 2022, 351, 118643. DOI: https://doi.org/10.1016/j.molliq.2022.118643
- 116 T. E. Sintra, A. Luís, S. N. Rocha, A. I. M. C. Lobo Ferreira, F. Gonçalves, L. M. N. B. F. Santos, B. M. Neves, M. G. Freire, S. P. M. Ventura, J. A. P. Coutinho, ACS Sustainable Chem. Eng. 2015, 3, 2558–2565. DOI: https://doi.org/10.1021/acssuschemeng.5b00751
- 117 N. H. Silva, A. F. Rodrigues, I. F. Almeida, P. C. Costa, C. Rosado, C. P. Neto, A. J. Silvestre, C. S. Freire, Carbohydr. Polym. 2014, 106, 264–269. DOI: https://doi.org/10.1016/j.carbpol.2014.02.014
- 118 N. H. Silva, I. Drumond, I. F. Almeida, P. Costa, C. F. Rosado, C. P. Neto, C. S. Freire, A. J. Silvestre, Cellulose 2014, 21, 665–674. DOI: https://doi.org/10.1007/s10570-013-0114-1