A Meta-Analysis of Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone
Ambereen Aziz Niaze
Indian Institute of Technology Delhi, Department of Chemical Engineering, 110016 Hauz Khas, New Delhi, India
Search for more papers by this authorDeepa Dhaker
Indian Institute of Technology Delhi, Department of Chemical Engineering, 110016 Hauz Khas, New Delhi, India
Search for more papers by this authorCorresponding Author
Dr. Sreedevi Upadhyayula
Indian Institute of Technology Delhi, Department of Chemical Engineering, 110016 Hauz Khas, New Delhi, India
Correspondence: Dr. Sreedevi Upadhyayula ([email protected]), Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.Search for more papers by this authorAmbereen Aziz Niaze
Indian Institute of Technology Delhi, Department of Chemical Engineering, 110016 Hauz Khas, New Delhi, India
Search for more papers by this authorDeepa Dhaker
Indian Institute of Technology Delhi, Department of Chemical Engineering, 110016 Hauz Khas, New Delhi, India
Search for more papers by this authorCorresponding Author
Dr. Sreedevi Upadhyayula
Indian Institute of Technology Delhi, Department of Chemical Engineering, 110016 Hauz Khas, New Delhi, India
Correspondence: Dr. Sreedevi Upadhyayula ([email protected]), Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.Search for more papers by this authorAbstract
Selective hydrogenation of biomass-derived levulinic acid (LA) to γ-valerolactone (GVL) is an important reaction in biomass upgradation to produce valuable fuels and chemicals. Increasing demand for renewable energy sources has stipulated growth in catalytic research and has generated a massive amount of experimental data over the years. Inside this numerous data, fresh insights into property-performance associations can be found. However, the incomplete existence and unclear structure of these data records have hampered systematic information extraction thus far. This research proposes a meta-analysis approach for identifying associations between the physico-chemical properties of a catalyst and its reaction performance. The approach combines data from literature with insights from textbooks and statistical methods. A hypothesis is formulated based on a researcher's intuition and statistical significance is checked against the data. Repetitive hypothesis refining gives robust, clear, and analyzable chemical models. The results can be used to guide future research and catalyst production. The method for catalytic hydrogenation of LA to GVL is shown and validated here.
Supporting Information
Filename | Description |
---|---|
cben202200028-sup-0001-misc_information.pdf722.4 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 L. Ye, Y. Han, J. Feng, X. Lu, Ind. Crops Prod. 2020, 144, 112031.
- 2 G. W. Huber, S. Iborra, A. Corma, Chem. Catal. Eng. Chem. Rev. 2006, 106, 4044–4098.
- 3 B. Girisuta, L. P. B. M. Janssen, H. J. Heeres, Green Chem. 2006, 8, 701–709.
- 4 D. M. Alonso, S. G. Wettstein, M. A. Mellmer, I. Gurbuz, J. A. Dumesic, Energy Environ. Sci. 2013, 6, 76–80.
- 5 B. P. Pinto, A. L. L. Fortuna, C. P. Cardoso, C. J. A. Mota, Catal. Lett. 2016, 147 (3), 51–757.
- 6 D. R. Fernandes, A. S. Rocha, E. F. Mai, C. J. A. Mota, V. Teixeira Da Silva, Appl. Catal. A 2012, 425–426, 199–204.
- 7 X. L. Du et al., Angew. Chem. Int. Ed. 2011, 50 (34), 7815–7819.
- 8 D. Shanta, K. M. Iris, C. W. Daniel, Y. Hau, Y. Sik, J. Sheerwood, H. C. James, Chem. Eng. J. 2019, 372, 992–1006.
- 9 S. Choi, C. Woo, J. Ho, S. Yup, Metab. Eng. 2015, 28, 223–239.
- 10 L. E. Manzer, Appl. Catal. A 2004, 272, 249–256.
- 11 D. M. Alonso, M. R. Gallo, M. A. Mellmer, S. G. Wettstein, J. A. Dumesic, Catal. Sci. Technol. 2013, 3, 927–931.
- 12 O. A. Abdelrahman, A. Heyden, J. Q. Bond, ACS Catal. 2014, 4, 1171–1181.
- 13 J. Molleti, M. S. Tiwari, G. D. Yadav, Chem. Eng. J. 2018, 334, 2488–2499.
- 14 Z. Yan, L. Lin, S. Liu, Energy Fuel 2009, 23, 3853–3858.
- 15 J. N. Putro, F. E. Soetaredjo, S. Lin, Y. Ju, S. Ismadji, RSC Adv. 2015, 5, 41285–41299.
- 16 J. Deng, Y. Wang, T. Pan, Q. Xu, Q. Guo, Y. Fu, ChemSusChem 2013, 6, 1163–1167.
- 17 A. S. Amarasekara, M. A. Hasan, Catal. Commun. 2015, 60, 5–7.
- 18 A. Seretis, P. Diamantopoulou, I. Thanou, P. Tzevelekidis, Front. Chem. 2020, 8, 221.
- 19 A. M. Hengne, B. S. Kadu, N. S. Biradar, R. C. Chikate, C. V. Rode, RSC Adv. 2016, 6 (64), 59753–59761.
- 20 J. C. Serrano-Ruiz, D. Wang, J. A. Dumesic, Green Chem. 2010, 12 (4), 574–57.
- 21 A. S. Piskun, H. H. van de Bovenkamp, C. B. Rasrendra, J. G. M. Winkelman, H. J. Heeres, Appl. Catal. A 2016, 525, 158–167.
- 22 T. Pan, J. Deng, Q. Xu, Q. Guo, Green Chemistry 2013, 15 (10), 2967–2974.
- 23 M. Popova, P. Djinovic, A. Ristic, H. Lazarova, G. Drazic, A. Pintar, A. M. Balu, N. N. Tusar, Front. Chem. 2018, 6, 285.
- 24 V. V. Kumar, G. Naresh, M. Sudhakar, J. Tardio, S. K. Bhargava, A. Venugopal, Appl. Catal. A 2015, 505, 217–223.
- 25
G. V. Glass, Educ. Res.
1976, 5, 3–8.
10.3102/0013189X005010003 Google Scholar
- 26 R. Schmack, A. Friedrich, E. V. Kondratenko, R. Kraehnert, J. Polte, A. Werwatz, Nat. Commun. 2019, 10, 441.
- 27
U. Zavyalova, M. Holena, R. Schlcgl, M. Baerns, ChemCatChem
2011, 3 (12), 1735–1947.
10.1002/cctc.201100186 Google Scholar
- 28 J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbach, R. F. Lobo, G. W. Huber, J. Catal. 2011, 279 (2), 257–268.
- 29 D. Liu et al., Chem. Eng. J. 2019, 369, 386–393.
- 30 K. Jiang et al., Catal. Today 2016, 274, 55–59.
- 31 B. Zhang et al., ChemCatChem 2017, 9 (19), 3646–3654.
- 32 S. Song et al., Appl. Catal. B 2017, 217, 115–124.
- 33 L. D. Almeida et al., Catal. Today 2020, 344, 158–165.
- 34 K. D. Kim et al., RSC Adv. 2020, 10 (58), 35318–35328.
- 35 V. V. Kumar et al., RSC Adv. 2016, 6, 9872.
- 36 S. Shao et al., Green Energy Environ. 2021, 6 (4), 567–577.
- 37 J. Lv et al., RSC Adv. 2015, 5 (88), 72037–72045.
- 38
J. Fu, D. Sheng, X. Lu, Catalysts
2015, 6 (1), 6.
10.3390/catal6010006 Google Scholar
- 39 D. Hu et al., Front. Chem. 2021, 9, 725175.
- 40 V. Mohan et al., Catal. Sci. Technol. 2014, 4, 1253–1259.
- 41 K. Hengst et al., Ind. Eng. Chem. Res. 2017, 56 (10), 2680–2689.
- 42 I. Obregón et al., Chin. J. Catal. 2014, 35 (5), 656–662.
- 43 L. Zhang et al., Appl. Catal. B 2018, 232, 1–10.
- 44 S. Lomate, A. Sultana, T. Fujitani, Catal. Lett. 2018, 148 (1), 348–358.
- 45 Q. Xu et al., Green Chem. 2016, 18, 1287–1294.
- 46 A. M. Hengne, C. V. Rode, Green Chem. 2012, 14, 1064–1072.
- 47 P. Balla et al., J. Chem. Technol. Biotechnol. 2016, 91 (3), 769–776.
- 48 J. Yuan et al., Energy Environ. Sci. 2013, 6, 3308–3313.
- 49 P. P. Upare et al., Appl. Catal. A 2015, 491, 127–135.
- 50 J. Song et al., Angew. Chem. Int. Ed. 2015, 54 (32), 9399–9403.
- 51 M. Wachała et al., Int. J. Hydrogen Energy 2016, 41 (20), 8688–8695.
- 52 L. Bui et al., Angew. Chem. Int. Ed. 2013, 52 (31), 8022–8025.
- 53 D. Sun et al., Mol. Catal. 2017, 437, 105–113.
- 54 D. Yanase et al., Catal. Commun. 2020, 139, 105967.
- 55 R. Yoshida et al., Catal. Commun. 2017, 97, 79–82.
- 56 P. P. Upare et al., J. Ind. Eng. Chem. 2011, 17 (2), 287–292.
- 57 K. Yan, T. Lafleur, C. Jarvis, G. Wu, J. Cleaner Prod. 2014, 72, 230–232.
- 58 Y. Kuwahara et al., Catal. Today 2017, 281, 418–428.
- 59 K. Yan et al., Appl. Catal. A 2013, 468, 52–58.
- 60 W. Li et al., Mol. Catal. 2021, 506, 111538.
- 61 W. Luo et al., J. Catal. 2013, 301, 175–186.
- 62 K. Yan, A. Chen, Energy 2013, 58, 357–363.
- 63 Y. Kuwahara, Y. Magatani, H. Yamashita, Catal. Today 2015, 258, 262–269.
- 64 M. Popova et al., Front. Chem. 2018, 6, 285.
- 65 Y. Yao et al., Catal. Today 2014, 234, 245–250.
- 66 G. B. Peddakasu et al., Catal. Today 2019, 325, 68–72.
- 67 K. Yan, A. Chen, Fuel 2014, 115, 101–108.
- 68 R. Wang et al., RSC Adv. 2018, 8 (71), 40989–40995.
- 69 X. Long et al., Chin. J. Catal. 2015, 36 (9), 1512–1518.
- 70 M. L. Testa et al., Catal. Today 2015, 257, 291–296.
- 71 X. Du et al., Chin. J. Catal. 2013, 34 (5), 993–1001.
- 72 W. Tanwongwan et al., Appl. Catal. A 2019, 579, 91–98.
- 73 W. Song et al., Appl. Catal. A 2017, 540, 21–30.
- 74 V. V. Kumar et al., Appl. Catal. A 2017, 531, 169–176.
- 75 M. Sudhakar et al., Appl. Catal. B 2016, 180, 113–120.
- 76 W. Li et al., Ind. Eng. Chem. Res. 2020, 59 (39), 17338–17347.
- 77 S. Gundekari, K. Srinivasa, Catal. Commun. 2017, 102, 40–43.
- 78 C. López-Aguado et al., Catalysts 2020, 10 (6), 678.
- 79 M. G. Al-Shaal, W. R. H. Wright, R. Palkovits, Green Chem. 2012, 14, 1260–1263.
- 80 J. Wang, S. Jaenicke, G. K. Chuah, RSC Adv. 2014, 4, 13481–13489.
- 81 M. Chia, J. A. Dumesic, Chem. Commun. 2011, 47, 12233–12235.
- 82 P. A. Son, S. Nishimura, K. Ebitani, RSC Adv. 2014, 4, 10525–10530.
- 83 O. A. Abdelrahman, J. Catal. 2015, 329, 10–21.
- 84 W. Luo, P. C. A. Bruijnincx, B. M. Weckhuysen, J. Catal. 2014, 320, 33–41.
- 85 Z. Yan, L. Lin, S. Liu, Energy Fuels 2009, 23, 3853–3858.
- 86 C. Michel, Chem. Commun. 2014, 50, 12450–12453.
- 87 Y. Yang, G. Gao, X. Zhang, F. Li, ACS Catal. 2014, 4, 1419–1425.
- 88 J. Y. Park et al., J. Mater. Sci. 2015, 50, 334–343.
- 89 K. Hengst et al., Appl. Catal. A 2015, 502, 18–26.
- 90 K. Shimizu, S. Kanno, K. Kon, Green Chem. 2014, 16, 3899–3903.
- 91 M. Sudhakar, M. L. Kantam, V. S. Jaya, R. Kishore, K. V. Ramanujachary, A. Venugopal, Catal. Commun. 2014, 50, 101–104.
- 92 Z. Rong et al., Catal. Lett. 2014, 144, 1766–1771.
- 93 Y. Gong, L. Lin, Z. Yan, BioResources 2011, 6 (1), 686–699.
- 94 C. Ortiz-Cervantes, J. García, Inorg. Chim. Acta 2013, 397, 124–128.
- 95 C. Delhomme et al., J. Organometal. Chem. 2013, 724, 297–299.
- 96
A. Piskun et al., Catalysts
2016, 6 (9), 131.
10.3390/catal6090131 Google Scholar
- 97 X. L. Du et al., Angew. Chem. Int. Ed. 2011, 50, 7815–7819.
- 98 D. M. Alonso et al., ChemSusChem 2011, 4, 1078–1081.
- 99 J. Zhang et al., ACS Sust. Chem. Eng. 2015, 3, 1708–171.
- 100 S. S. R. Gupta, M. L. Kantam, Catal. Today 2018, 309, 189–194.
- 101 H. Zhong et al., ACS Sustainable Chem. Eng. 2017, 5, 6517–6523.
- 102 B. S. Kadu et al., Ind. Eng. Chem. Res. 2016, 55, 13032–13039.
- 103 X. Tang et al., ChemCatChem 2015, 7, 1372–1379.