Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication
Corresponding Author
Hayder A. Abdulbari
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow, Faculty of Chemical and Natural Resources Engineering, 26300 Kuantan, Pahang, Malaysia
Correspondence: Hayder A. Abdulbari ([email protected]), Center of Excellence for Advanced Research in Fluid Flow, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia.Search for more papers by this authorEsmail A. M. Basheer
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow, Faculty of Chemical and Natural Resources Engineering, 26300 Kuantan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Hayder A. Abdulbari
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow, Faculty of Chemical and Natural Resources Engineering, 26300 Kuantan, Pahang, Malaysia
Correspondence: Hayder A. Abdulbari ([email protected]), Center of Excellence for Advanced Research in Fluid Flow, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia.Search for more papers by this authorEsmail A. M. Basheer
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow, Faculty of Chemical and Natural Resources Engineering, 26300 Kuantan, Pahang, Malaysia
Search for more papers by this authorAbstract
This paper reviews the engineering design of an electrochemical biosensor, particularly the main concepts of electrodes and the type of material selections, design, and fabrication method. Furthermore, the related theories and practical examples from existing literature are reviewed. Research is now directed toward the development of biosensors as important bioanalytical tools in the pharmaceutical, biotechnology, food, and other consumer-oriented industries. Currently, comprehensive guidelines on the selection of electrodes for electrochemical biosensors are unavailable. Factual options are important in determining the real-time response of biosensors. Attempts to determine the best material and design for electrodes have no results because of the complexity of fabrication and the lifespan of the material chosen for the electrodes. This paper summarizes the trends in numerous studies on developing electrochemical biosensors. A better understanding of biosensors will greatly assist in the design of new and improved biosensors.
References
- 1 L. C. Clark, C. Lyons, Ann. N.Y. Acad. Sci. 1962, 102 (1), 29–45.
- 2 J. Reichert, A. Csáki, J. M. Köhler, W. Fritzsche, Anal. Chem. 2000, 72 (24), 6025–6029.
- 3 K. Ramanathan, B. Danielsson, Biosens. Bioelectron. 2001, 16 (6), 417–423.
- 4 S. Babacan, P. Pivarnik, S. Letcher, A. Rand, Biosens. Bioelectron. 2000, 15 (11), 615–621.
- 5 M. A. Alonso-Lomillo, O. Domínguez-Renedo, M. J. Arcos-Martínez, Talanta 2010, 82 (5), 1629–1636.
- 6
H. Bridle, M. Desmulliez, in Waterborne Pathogens (Ed: H. Bridle), Academic Press, Amsterdam
2014, 189–229.
10.1016/B978-0-444-59543-0.00007-4 Google Scholar
- 7 J. Cao, T. Sun, K. T. V. Grattan, Sens. Actuators, B 2014, 195, 332–351.
- 8 F. Davis, S. P. J. Higson, Biosens. Bioelectron. 2005, 21 (1), 1–20.
- 9 L. Ding, A. M. Bond, J. Zhai, J. Zhang, Anal. Chim. Acta 2013, 797, 1–12.
- 10
M. C. Goldschmidt, in Encyclopedia of Food Microbiology (Eds: C. A. Batt, M. L. Tortorello), 2nd ed., Academic Press, Oxford
2014, 274–287.
10.1016/B978-0-12-384730-0.00041-0 Google Scholar
- 11 E. Hamidi-Asl, I. Palchetti, E. Hasheminejad, M. Mascini, Talanta 2013, 115, 74–83.
- 12 T. Ikeda, K. Kano, J. Biosci. Bioeng. 2001, 92 (1), 9–18.
- 13 W.-Z. Jia, K. Wang, X.-H. Xia, Trends Anal. Chem. 2010, 29 (4), 306–318.
- 14 O. Lazcka, F. J. D. Campo, F. X. Muñoz, Biosens. Bioelectron. 2007, 22 (7), 1205–1217.
- 15 A. Liu, K. Wang, S. Weng, Y. Lei, L. Lin, W. Chen, X. Lin, Y. Chen, Trends Anal. Chem. 2012, 37, 101–111.
- 16 S. Prakash, T. Chakrabarty, A. K. Singh, V. K. Shahi, Biosens. Bioelectron. 2013, 41, 43–53.
- 17 B. Prieto-Simón, M. Cortina, M. Campàs, C. Calas-Blanchard, Sens. Actuators, B 2008, 129 (1), 459–466.
- 18 B. Serra, S. Jiménez, M. L. Mena, A. J. Reviejo, J. M. Pingarrón, Biosens. Bioelectron. 2002, 17 (3), 217–226.
- 19 S. Guo, S. Dong, Trends Anal. Chem. 2009, 28 (1), 96–109.
- 20
A. J. Veloso, X. R. Cheng, K. Kerman, in Biosensors for Medical Applications (Ed: S. Higson), Woodhead Publishing, Cambridge
2012, 3–40.
10.1533/9780857097187.1.3 Google Scholar
- 21
J. Wang, Biosens. Bioelectron.
2006, 21 (10), 1887–1892.
10.1016/j.bios.2005.10.027 Google Scholar
- 22 C. Wu, L. Du, L. Zou, L. Zhao, L. Huang, P. Wang, Sens. Actuators, B 2014, 201, 75–85.
- 23 S. Liu, H. Ju, Biosens. Bioelectron. 2003, 19 (3), 177–183.
- 24 D. Ragupathy, S. C. Lee, S. S. Al-Deyab, A. Rajendren, J. Ind. Eng. Chem. 2014, 20 (3), 930–936.
- 25 H. Huang, W. Bai, C. Dong, R. Guo, Z. Liu, Biosens. Bioelectron. 2015, 68, 442–446.
- 26 J. Heo, R. M. Crooks, Anal. Chem. 2005, 77 (21), 6843–6851.
- 27 H. A. Bari, E. A. Basheer, Curr. Anal. Chem. 2016, 12 (6), 1–14.
- 28 W. Putzbach, N. J. Ronkainen, Sensors 2013, 13 (4), 4811–4840.
- 29 W. Putzbach, N. J. Ronkainen, Sensors 2013, 13 (4), 4811–4840.
- 30 J. Wang, Chem. Rev. 2008, 108 (2), 814–825.
- 31 S. Updike, G. Hicks, Nature 1967, 214, 986–988.
- 32 M. Meyerhoff, W. Opdycke, Adv. Clin. Chem. 1986, 25, 1–47.
- 33 J. C. Armour, D. A. Gough, J. Y. Lucisano, B. D. McKean, 1987. US4703756
- 34 D. A. Gough, J. Y. Lucisano, P. H. Tse, Anal. Chem. 1985, 57 (12), 2351–2357.
- 35 F. Lu, J. Wang, X. Zhang, 2005. US6893552
- 36 A. E. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, A. Turner, Anal. Chem. 1984, 56 (4), 667–671.
- 37 N. C. Foulds, C. R. Lowe, Anal. Chem. 1988, 60 (22), 2473–2478.
- 38 W. Schuhmann, C. Kranz, H. Wohlschläger, J. Strohmeier, Biosens. Bioelectron. 1997, 12 (12), 1157–1167.
- 39 W. Schuhmann, Biosens. Bioelectron. 1995, 10 (1), 181–193.
- 40 E. Katz, A. Riklin, V. Heleg-Shabtai, I. Willner, A. Bückmann, Anal. Chim. Acta 1999, 385 (1), 45–58.
- 41 Y. Okawa, M. Nagano, S. Hirota, H. Kobayashi, T. Ohno, M. Watanabe, Biosens. Bioelectron. 1999, 14 (2), 229–235.
- 42 E.-H. Yoo, S.-Y. Lee, Sensors 2010, 10 (5), 4558–4576.
- 43 P. A. Fiorito, S. I. Torresi, J. Braz. Chem. Soc. 2001, 12 (6), 729–733.
- 44 J. E. Frew, H. A. O. Hill, Anal. Chem. 1987, 59 (15), 933A–944A.
- 45 H.-S. Noh, H. Lee, B.-K. Kim, H.-W. Lee, J.-H. Lee, J.-W. Son, J. Power Sources 2011, 196 (17), 7169–7174.
- 46 N. Oyama, F. C. Anson, J. Electrochem. Soc. 1980, 127 (3), 640–647.
- 47 J. C. Vidal, L. Bonel, A. Ezquerra, S. Hernández, J. R. Bertolín, C. Cubel, J. R. Castillo, Biosens. Bioelectron. 2013, 49, 146–158.
- 48 Y. Xu, E. Wang, Electrochim. Acta 2012, 84, 62–73.
- 49 J. Hees, R. Hoffmann, A. Kriele, W. Smirnov, H. Obloh, K. Glorer, B. Raynor, R. Driad, N. Yang, O. A. Williams, ACS Nano 2011, 5 (4), 3339–3346.
- 50 S. Basu, W. Kang, J. Davidson, B. Choi, A. Bonds, D. Cliffel, Diamond Relat. Mater. 2006, 15 (2), 269–274.
- 51 L. Gorton, A. Lindgren, T. Larsson, F. Munteanu, T. Ruzgas, I. Gazaryan, Anal. Chim. Acta. 1999, 400 (1), 91–108.
- 52
A. Walcarius, C. Gondran, S. Cosnier, in Chemical and Biological Microsensors: Applications in Liquid Media (Eds: P. Fabry, J. Fouletier), John Wiley & Sons, New York
2013, 115–171.
10.1002/9781118603871.ch5 Google Scholar
- 53 M. Tertis, A. Florea, R. Sandulescu, C. Cristea, Sensors 2013, 13 (4), 4841–4854.
- 54 K. Prathish, M. M. Barsan, D. Geng, X. Sun, C. M. A. Brett, Electrochim. Acta 2013, 114, 533–542.
- 55 S. Majumder, B. Bhattacharya, P. K. Singh, S. Johari, Sensor Lett. 2013, 11 (11), 2055–2059.
- 56 S. Saen-Oon, M. F. Lucas, V. Guallar, Phys. Chem. Chem. Phys. 2013, 15 (37), 15271–15285.
- 57 J. Wang, H. Zhao, L. Du, H. Cai, P. Wang, Sen. Actuat., B 2013, 187, 147–152.
- 58 A. D. Chowdhury, R. Gangopadhyay, A. De, Sen. Actuat., B 2014, 190, 348–356.
- 59 F. Wang, X. Liu, I. Willner, Adv. Mater. 2013, 25 (3), 349–377.
- 60 A. K. M. Kafi, M. J. Crossley, Biosens. Bioelectron. 2013, 42 (1), 273–279.
- 61 X. Lu, Q. Zhang, L. Zhang, J. Li, Electrochem. Commun. 2006, 8 (5), 874–878.
- 62 D. J. Beebe, G. A. Mensing, G. M. Walker, Ann. Rev. Biomed. Eng. 2002, 4 (1), 261–286.
- 63 M. F. Tavares, V. L. McGuffin, Anal. Chem. 1995, 67 (20), 3687–3696.
- 64 D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, Biosens. Bioelectron. 2001, 16 (1–2), 121–131.
- 65 W. M. Haynes, Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL 2012.
- 66 A. L. Kadilak, Y. Liu, S. Shrestha, J. R. Bernard, W. E. Mustain, L. M. Shor, J. Electroanal. Chem. 2014, 727, 141–147.
- 67 C. Kojima, Y. Watanabe, H. Hattori, T. Iida, J. Phys. Chem. C 2011, 115 (39), 19091–19095.
- 68 H. O. Finklea, D. A. Snider, J. Fedyk, E. Sabatani, Y. Gafni, I. Rubinstein, Langmuir 1993, 9 (12), 3660–3667.
- 69 C. A. Goss, D. H. Charych, M. Majda, Anal. Chem. 1991, 63 (1), 85–88.
- 70 B. S. Sumerlin, A. B. Lowe, P. A. Stroud, P. Zhang, M. W. Urban, C. L. McCormick, Langmuir 2003, 19 (14), 5559–5562.
- 71 X. Feng, H. Huang, Q. Ye, J.-J. Zhu, W. Hou, J. Phys. Chem. C 2007, 111 (24), 8463–8468.
- 72 C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 2005, 109 (29), 13857–13870.
- 73 G. M. Lowman, S. L. Nelson, S. M. Graves, G. F. Strouse, S. K. Buratto, Langmuir 2004, 20 (6), 2057–2059.
- 74 J. W. Hotchkiss, A. B. Lowe, S. G. Boyes, Chem. Mater. 2007, 19 (1), 6–13.
- 75 A. L. Ottova, H. T. Tien, Bioelectrochem. Bioenerg. 1997, 42 (2), 141–152.
- 76 H. T. Tien, A. L. Ottova, Colloids Surf. A 1999, 149 (1), 217–233.
- 77 H. T. Tien, Bilayer Lipid Membranes (BLM): Theory and Practice, M. Dekker, New York 1974.
- 78 M. Zviman, H. T. Tien, Biosens. Bioelectron. 1991, 6 (1), 37–42.
- 79 P. Krysiński, M. Brzostowska-Smolska, Bioelectrochem. Bioenerg. 1998, 44 (2), 163–168.
- 80 A. L. Plant, Langmuir 1993, 9 (11), 2764–2767.
- 81 M. French, S. E. Creager, Langmuir 1998, 14 (8), 2129–2133.
- 82 K. Bandyopadhyay, V. Patil, M. Sastry, K. Vijayamohanan, Langmuir 1998, 14 (14), 3808–3814.
- 83 K. Bandyopadhyay, K. Vijayamohanan, M. Venkataramanan, T. Pradeep, Langmuir 1999, 15 (16), 5314–5322.
- 84 K. Bandyopadhyay, K. Vijayamohanan, Langmuir 1998, 14 (3), 625–629.
- 85 P. Diao, D. Jiang, X. Cui, D. Gu, R. Tong, B. Zhong, J. Electroanal. Chem. 1999, 464 (1), 61–67.
- 86 L. Bulgariu, D. Bulgariu, Chem. Bullet. Politehnica Univ. (Timisoara) 2008, 53 (67), 163–167.
- 87 A. Dalmia, C. Liu, R. Savinell, J. Electroanal. Chem. 1997, 430 (1), 205–214.
- 88 M. Esplandiu, H. Hagenström, D. Kolb, Langmuir 2001, 17 (3), 828–838.
- 89 K. Uosaki, Y. Sato, H. Kita, Langmuir 1991, 7 (7), 1510–1514.
- 90 H. Xu, X. Y. Ling, J. van Bennekom, X. Duan, M. J. Ludden, D. N. Reinhoudt, M. Wessling, R. G. Lammertink, J. Huskens, J. Am. Chem. Soc. 2008, 131 (2), 797–803.
- 91 M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104 (1), 293–346.
- 92 Y. Li, H. J. Schluesener, S. Xu, Gold Bull. 2010, 43 (1), 29–41.
- 93 S. Zhang, N. Wang, H. Yu, Y. Niu, C. Sun, Bioelectrochemistry 2005, 67 (1), 15–22.
- 94 A. Crumbliss, J. Stonehuerner, R. Henkens, J. Zhao, J. O'Daly, Biosens. Bioelectron. 1993, 8 (6), 331–337.
- 95 M. Mena, P. Yanez-Sedeno, J. Pingarrón, Anal. Biochem. 2005, 336 (1), 20–27.
- 96 M. Schena, R. A. Heller, T. Theriault, K. Konrad, E. Lachenmeier, R. W. Davis, Trends Biotechnol. 1998, 16 (7), 301–306.
- 97
C. M. Niemeyer, D. Blohm, Angew. Chem., Int. Ed.
1999, 38 (19), 2865–2869.
10.1002/(SICI)1521-3773(19991004)38:19<2865::AID-ANIE2865>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 98 C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996, 382 (6592), 607–609.
- 99 A. Alivisatos, K. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. Bruchez, P. G. Schultz, Nature 1996, 382 (6592), 609–611.
- 100 T. A. Taton, C. A. Mirkin, R. L. Letsinger, Science 2000, 289 (5485), 1757–1760.
- 101 A. Csaki, R. Möller, W. Straube, J. Köhler, W. Fritzsche, Nucleic Acids Res. 2001, 29 (16), e81–e81.
- 102 S.-J. Park, T. A. Taton, C. A. Mirkin, Science 2002, 295 (5559), 1503–1506.
- 103 B. K. Jena, C. R. Raj, Anal. Chem. 2006, 78 (18), 6332–6339.
- 104 M. Brust, D. Bethell, C. J. Kiely, D. J. Schiffrin, Langmuir 1998, 14 (19), 5425–5429.
- 105 K. C. Grabar, K. J. Allison, B. E. Baker, R. M. Bright, K. R. Brown, R. G. Freeman, A. Fox, C. D. Keating, M. D. Musick, M. J. Natan, Langmuir 1996, 12 (10), 2353–2361.
- 106 J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, S. Dong, Anal. Chem. 2002, 74 (9), 2217–2223.
- 107 M.-H. Xue, Q. Xu, M. Zhou, J.-J. Zhu, Electrochem. Commun. 2006, 8 (9), 1468–1474.
- 108 J. Manso, M. Mena, P. Yanez–Sedeno, J. Pingarron, J. Electroanal. Chem. 2007, 603 (1), 1–7.
- 109 B.-Y. Wu, S.-H. Hou, F. Yin, J. Li, Z.-X. Zhao, J.-D. Huang, Q. Chen, Biosens. Bioelectron. 2007, 22 (6), 838–844.
- 110 S. E. Bennett, B.Sc. Thesis, Massachusetts Institute of Technology 2006.
- 111 J. Gerlach, E. Küzeci, Hydrometallurgy 1983, 11 (3), 345–361.
- 112 R. Adams, Anal. Chem. 1958, 30 (9), 1576–1576.
- 113 E. Ahlberg, J. Asbjörnsson, Hydrometallurgy 1993, 34 (2), 171–185.
- 114 I. Lázaro, N. Martínez-Medina, I. Rodríguez, E. Arce, I. González, Hydrometallurgy 1995, 38 (3), 277–287.
- 115 Z. Lu, M. Jeffrey, F. Lawson, Hydrometallurgy 2000, 56 (2), 189–202.
- 116 R. Cruz, R. Luna–Sánchez, G. Lapidus, I. González, M. Monroy, Hydrometallurgy 2005, 78 (3), 198–208.
- 117 J. lililililiys, Biosens. Bioelectron. 1999, 14 (5), 473–479.
- 118 M. Pravda, C. Petit, Y. Michotte, J.-M. Kauffmann, K. Vytřas, J. Chromatogr. 1996, 727 (1), 47–54.
- 119 X. Li, R. Zhao, Y. Wang, X. Sun, W. Sun, C. Zhao, K. Jiao, Electrochim. Acta 2010, 55 (6), 2173–2178.
- 120 M.-Q. Liu, J.-H. Jiang, Y.-L. Feng, G.-L. Shen, R.-Q. Yu, Chin. J. Anal. Chem. 2007, 35 (10), 1435–1438.
- 121 P. Raghu, T. Madhusudana Reddy, K. Reddaiah, L. R. Jaidev, G. Narasimha, Enzyme Microb. Technol. 2013, 52 (6–7), 377–385.
- 122 K. R. Rogers, J. Y. Becker, J. Cembrano, Electrochim. Acta 2000, 45 (25–26), 4373–4379.
- 123 M. Zaib, A. Saeed, I. Hussain, M. Athar, M. Iqbal, Biosens. Bioelectron. 2014, 62, 242–248.
- 124 L. Jin, J. Ye, W. Tong, Y. Fang, Microchim. Acta 1993, 112 (1–4), 71–75.
- 125 V. Carralero Sanz, M. L. Mena, A. González–Cortés, P. Yáñez-Sedeño, J. M. Pingarrón, Anal. Chim. Act. 2005, 528 (1), 1–8.
- 126 M. Zhou, L. Shang, B. Li, L. Huang, S. Dong, Biosens. Bioelectron. 2008, 24 (3), 442–447.
- 127 J. M. Pingarrón, P. Yáñez–Sedeño, A. González–Cortés, Electrochim. Acta 2008, 53 (19), 5848–5866.
- 128 P. R. Wallace, Phys. Rev. 1947, 71 (9), 622.
- 129 K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Proc. Nat. Acad. Sci. Am. 2005, 102 (30), 10451–10453.
- 130 S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner, Nano Lett. 2007, 7 (11), 3394–3398.
- 131 X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8 (1), 323–327.
- 132 S. Alwarappan, A. Erdem, C. Liu, C.-Z. Li, J. Phys. Chem. C 2009, 113 (20), 8853–8857.
- 133 E. Randviir, D. A. Brownson, J. Metters, R. O. Kadara, C. E. Banks, Phys. Chem. Chem. Phys. 2014, 16 (10), 4598–4611.
- 134 A. Hayat, J. Marty, Sensors 2014, 14 (6), 10432–10453.
- 135 E. Basheer, H. Bari, S. Nudra, J. Pure Appl. Microbiol. 2015, 9, 525–532.
- 136 J. C. Love, J. R. Anderson, G. M. Whitesides, MRS Bull. 2001, 26 (7), 523–528.
- 137 E. Nakamachi, H. Hwang, N. Okamoto, Y. Morita, J. Micro/Nanolithogr., MEMS, MOEMS 2011, 10 (3), 033013–033013–7.