Process Engineering Aspects of Vertical Column Photobioreactors for Mass Production of Microalgae
Corresponding Author
Sanjay B. Pawar
Environmental Biotechnology Division, CSIR – National Environmental Engineering Research Institute (NEERI), Nagpur-440020, India.
Environmental Biotechnology Division, CSIR – National Environmental Engineering Research Institute (NEERI), Nagpur-440020, India.Search for more papers by this authorCorresponding Author
Sanjay B. Pawar
Environmental Biotechnology Division, CSIR – National Environmental Engineering Research Institute (NEERI), Nagpur-440020, India.
Environmental Biotechnology Division, CSIR – National Environmental Engineering Research Institute (NEERI), Nagpur-440020, India.Search for more papers by this authorAbstract
Microalgae cultivation can be made sustainable on a large-scale by lowering the costs associated with closed photobioreactors (PBRs). It can be achieved through the appropriate design of closed PBRs to achieve maximum productivity. The cultivation of microalgae is very sensitive to temperature, pH, shear stress, irradiance, and operating conditions of the PBR. The understanding of design parameters is a prerequisite for scale-up of gas-sparged vertical column PBRs. The hydrodynamics of gas-sparged vertical column PBRs play a very critical role in the optimum production of microalgae and avoiding the carbon loss (unabsorbed CO2 out of total supplied). In this article, the effects of design parameters on microalgae productivity in various vertical column PBRs, i.e., flat panel, bubble column, and airlift (draft tube) column, are critically reviewed. The microalgae production in PBRs is essentially a three-phase operation. Hence, the hydrodynamic aspects of two- and three-phase flow in the vertical column PBR are emphasized with respect to its scale-up prospect. The flow regimes and CFD modeling aspects of gas-sparged PBRs are also covered in this review.
References
- 1 L. Brennan, P. Owende, Renewable Sustainable Energ. Rev. 2010, 14, 557–577.
- 2
E. Eustance, S. Badvipour, J. T. Wray, M. R. Sommerfeld, J. Appl. Phycol. 2015, 1–13. DOI: 10.1007/s10811-015-0710-6
10.1007/s10811‐015‐0710‐6 Google Scholar
- 3 J. H. de Vree, R. Bosma, M. Janssen, M. J. Barbosa, R. H. Wijffels, Biotechnol. Biofuels 2015, 8, 215.
- 4 E. Lee, J. Pruvost, X. He, R. Munipalli, L. Pilon, Chem. Eng. Sci. 2014, 106, 18–29.
- 5 J. Pruvost, J. Cornet, V. Goetz, J. Legrand, Biotechnol. Prog. 2012, 28, 699–714.
- 6 Y. Chisti, Biotechnol. Adv. 2007, 25, 294–306.
- 7 G. Olivieri, P. Salatino, A. Marzocchella, J. Chem. Technol. Biotechnol. 2014, 89, 178–195.
- 8 E. M. Grima, F. G. A. Fernandez, F. G. Camacho, Y. Chisti, J. Biotechnol. 1999, 70, 231–247.
- 9 A. S. Miron, M. C. C. Garcia, A. C. Gomez, F. G. Camacho, E. M. Grima, Y. Chisti, Biochem. Eng. J. 2003, 16, 287–297.
- 10 M. C. G. Lopez, E. D. R. Sanchez, J. L. C. Lopez, F. G. A. Fernandez, J. M. F. Sevilla, J. Rivas, M. G. Guerrero, E. M. Grima, J. Biotechnol. 2006, 123, 329–342.
- 11 S. Krichnavaruk, W. Loataweesup, S. Powtongsook, P. Pavasant, Chem. Eng. J. 2005, 105, 91–98.
- 12 A. S. Miron, F. G. Camacho, A. C. Gomez, E. M. Grima, Y. Chisti, J. Biotechnol. 1999, 70, 249–270.
- 13 A. S. Miron, F. G. Camacho, A. C. Gomez, E. M. Grima, Y. Chisti, AIChE J. 2000, 46, 1872–1887.
- 14 C. Hulatt, D. Thomas, Bioresour. Technol. 2011, 102, 5775–5787.
- 15 A. K. Pegallapati, N. Nirmalakhandan, Bioresour. Technol. 2012, 124, 137–145.
- 16 M. Janssen, L. de Bresser, T. Baijens, J. Tramper, L. R. Mur, J. F. H. Snel, R. H. Wijffels, J. Appl. Phycol. 2000, 12, 225–237.
- 17
F. G. A. Fernandez, F. G. Camacho, J. A. S. Perez, J. M. F. Sevilla, E. M. Grima, Biotechnol. Bioeng. 1998, 58, 605–616.
10.1002/(SICI)1097-0290(19980620)58:6<605::AID-BIT6>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 18 K. Kumar, A. Sirasale, D. Das, Bioresour. Technol. 2013, 143, 88–95.
- 19 A. Jacobi, C. Steinweg, R. R. Sastre, C. Posten, Eng. Life. Sci. 2012, 12, 621–630.
- 20 K. Zhang, S. Miyachi, N. Kurano, Appl. Microbiol. Biotechnol. 2001, 55, 428–433.
- 21 M. J. Barbosa, Hadiyanto, R. H. Wijffels, Biotechnol. Bioeng. 2004, 85, 78–85.
- 22 A. Rengel, A. Zoughaib, D. Dron, D. Clodic, Appl. Microbiol. Biotechnol. 2012, 93, 117–129.
- 23 B. Kong, R. D. Vigil, Bioresour. Technol. 2014, 158, 141–148.
- 24 E. Sierra, F. G. Acien, J. M. Fernandez, J. L. Garcia, C. Gonzalez, E. Molina, Chem. Eng. J. 2008, 138, 136–147.
- 25 J. Pruvost, G. Van Vooren, B. Le Gouic, A. Couzinet-Mossion, J. Legrand, Bioresour. Technol. 2011, 102, 150–158.
- 26 P. M. Slegers, P. J. M. van Beveren, R. H. Wijffels, G. van Straten, A. J. B. van Boxtel, Appl. Energy 2013, 105, 395–406.
- 27 M. Cuaresma, M. Janssen, C. Vilchez, R. H. Wijffels, Bioresour. Technol. 2011, 102, 5129–5137.
- 28 A. Richmond, Z. Cheng-Wu, J. Biotechnol. 2001, 85, 259–269.
- 29 L. Xu, P. J. Weathers, X. Xiong, C. Liu, Eng. Life Sci. 2009, 9, 178–189.
- 30 A. M. S. Benavides, G. Torzillo, J. Kopecky, J. Masojıek, Biomass Bioenerg. 2013, 54, 115–122.
- 31 F. G. Camacho, A. C. Gomez, F. G. A. Fernandez, J. F. Sevilla, E. M. Grima, Enzyme Microb. Tech. 1999, 24, 164–172.
- 32
F. C. Rubio, F. G. A. Fernandez, J. A. S. Perez, F. G. Camacho, E. M. Grima, Biotechnol. Bioeng. 1999, 62, 71–86.
10.1002/(SICI)1097-0290(19990105)62:1<71::AID-BIT9>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 33 E. Molina, J. Fernandez, F. G. Acien, Y. Chisti, J. Biotechnol. 2001, 92, 113–131.
- 34 A. P. Carvalho, L. A. Meireles, F. X . Malcata, Biotechnol. Prog. 2006, 22, 1490–1506.
- 35 M. H. A. Michels, A. J. van der Goot, N. Norsker, R. H. Wijffels, Bioprocess Biosyst. Eng. 2010, 33, 921–927.
- 36 K. Zhang, N. Kurano, S. Miyachi, Appl. Microbiol. Biotechnol. 1999, 52, 781–786.
- 37 P. M. Slegers, R. H. Wijffels, G. van Straten, A. J. B. van Boxtel, Appl. Energy 2011, 88, 3342–3353.
- 38 X. Guo, L. Yao, Q. Huang, Bioresour. Technol. 2015, 190, 189–195.
- 39 M. Moroni, A. Cicci, M. Bravi, Water Res. 2014, 52, 29–39.
- 40 G. Torzillo, L. Giannelli, A. J. Martinez-Roldan, N. Verdone, P. De Filippis, M. Scarsella, M. Bravi, Chem. Eng. Trans. 2010, 20, 265–270.
- 41 J. Doucha, K. Livansky, J. Appl. Phycol. 2009, 21, 111–117.
- 42 A. Ozkan, K. Kinney, L. Katz, H. Berberoglu, Bioresour. Technol. 2012, 114, 542–548.
- 43 A. Cicci, M. Stoller, M. Moroni, M. Bravi, Chem. Eng. Trans. 2015, 43, 235–240.
- 44 R. Reyna-Velarde, E. Cristiani-Urbina, D. J. Hernandez-Melchor, F. Thalasso, R. O. Canizares-Villanueva, Chem. Eng. Process. 2010, 49, 97–103.
- 45 W. Wang, F. Han, Y. Li, Y. Wu, J. Wang, R. Pan, G. Shen, Bioresour. Technol. 2014, 170, 395–403.
- 46 J. Li, M. Stamato, E. Velliou, C. Jeffryes, S. N. Agathos, J. Appl. Phycol. 2015, 27, 75–86.
- 47 Y. Arudchelvam, N. Nirmalakhandan, Biomass Bioenergy 2012, 46, 757–764.
- 48 Y. Arudchelvam, N. Nirmalakhandan, Biomass Bioenergy 2012, 46, 765–772.
- 49 F. J. Valdes, M. R. Harnandez, L. Catala, A. Marcilla, Bioresour. Technol. 2012, 119, 1–6.
- 50 A. San Pedro, C. V. Gonzalez-Lopez, F. G. Acien, E. Molina-Grima, Bioresour. Technol. 2014, 169, 667–676.
- 51 H. Luo, M. H. Al-Dahhan, Biotechnol. Bioeng. 2012, 109, 932–941.
- 52 H. Luo, M. H. Al-Dahhan, Biotechnol. Bioeng. 2012, 109, 942–949.
- 53 Z. Demirel, E. Imamoglu, M. C. Dalay, J. Chem. Technol. Biotechnol. 2015, 90, 2290–2296.
- 54 S. Oncel, F. V. Sukan, Bioresour. Technol. 2008, 99, 4755–4760.
- 55 K. Kumar, D. Das, Bioresour. Technol. 2012, 116, 307–313.
- 56 B. D. Fernandes, A. Mota, A. Ferreira, G. Dragone, J. A. Teixeira, A. A. Vicente, Chem. Eng. Sci. 2014, 117, 445–454.
- 57 K. Loubiere, E. Olivo, G. Bougaran, J. Pruvost, R. Robert, J. Legrand, Biotechnol. Bioeng. 2009, 102, 132–147.
- 58 D. Sasi, P. Mitra, A. Vigueras, G. A. Hill, J. Chem. Technol. Biotechnol. 2011, 86, 875–880.
- 59 F. G. A. Fernandez, J. M. F. Sevilla, J. A. S. Perez, E. M. Grima, Y. Chisti, Chem. Eng. Sci. 2001, 56, 2721–2732.
- 60
J. C. Merchuk, M. Ronen, S. Giris, S. Arad, Biotechnol. Bioeng. 1998, 59, 705–713.
10.1002/(SICI)1097-0290(19980920)59:6<705::AID-BIT7>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 61 J. C. Merchuk, M. Gluz, I. Mukmenev, J. Chem. Technol. Biotechnol. 2000, 75, 1119–1126.
- 62
A. Contreras, F. Garcia, E. Molina, J. C. Merchuk, Biotechnol. Bioeng. 1998, 60, 317–325.
10.1002/(SICI)1097-0290(19981105)60:3<317::AID-BIT7>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 63 S. Talvy, A. Cockx, A. Line, AIChE J. 2007, 53, 335–353.
- 64 M. Barbosa, M. Janssen, N. Ham, J. Tramper, R. Wijffels, Biotechnol. Bioeng. 2002, 82, 170–179.
- 65 J. C. Merchuk, A. Contreras, F. Garcia, E. Molina, Chem. Eng. Sci. 1998, 53, 709–719.
- 66 X. Yaun, A. Kumar, A. K. Sahu, S. J. Ergas, Bioresour. Technol. 2011, 102, 3234–3239.
- 67 N. S. Hosseini, H. Shang, G. M. Ross, J. A. Scott, Bioresour. Technol. 2015, 192, 432–440.
- 68 L. Wang, Y. Tao, X. Mao, Bioresour. Technol. 2014, 164, 20–27.
- 69 W. A. J. Van Benthum, R. G. J. M. Van der Lans, M. C. M. Van Loosdrecht, J. J. Heijnen, Chem. Eng. Sci. 1999, 54, 3995–4006.
- 70 M. Y. Chisti, B. Halard, M. Moo-Young, Chem. Eng. Sci. 1988, 43, 451–457.
- 71 H. P. Luo, M. H. Al-Dahhan, Chem. Eng. Sci. 2010, 65, 4503–4510.
- 72 J. Klein, S. Godo, O. Dolgos, J. Markos, J. Chem. Technol. Biotechnol. 2001, 76, 516–524.
- 73 M. T. Dhotre, J. B. Joshi, Chem. Eng. J. 2007, 125, 149–163.
- 74 A. V. Kulkarni, S. S. Roy, J. B. Joshi, Chem. Eng. J. 2007, 133, 173–186.
- 75 F. Lehr, M. Millies, D. Mewes, AIChE J. 2002, 48, 2426–2443.
- 76 C. S. Lo, S. J. Hwang, Chem. Eng. J. 2003, 91, 3–22.
- 77 L. Luo, F. Liu, Y. Xu, J. Yuan, Chem. Eng. J. 2011, 175, 494–504.
- 78 C. Vial, S. Poncin, G. Wild, N. Midoux, Chem. Eng. Sci. 2002, 57, 4745–4762.
- 79 P. Wongsuchoto, T. Charinpanitkul, P. Pavasant, Chem. Eng. J. 2003, 92, 81–90.
- 80
S. J. Meier, T. A. Hatton, D. I. C. Wang, Biotechnol. Bioeng. 1999, 62, 468–478.
10.1002/(SICI)1097-0290(19990220)62:4<468::AID-BIT10>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 81
T. M. Sobczuk, F. G. Camacho, F. C. Rubio, F. G. A. Fernandez, E. M. Grima, Biotechnol. Bioeng. 2000, 67, 465–475.
10.1002/(SICI)1097-0290(20000220)67:4<465::AID-BIT10>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 82 K. Zhang, N. Kurano, S. Miyachi, Bioprocess Biosyst. Eng. 2002, 25, 97–101.
- 83 M. Prathima Devi, S. Venkata Mohan, Bioresour. Technol. 2012, 112, 116–123.
- 84 S. M. J. Jones, S. T. L. Harrison, Algal Res. 2014, 5, 249–257.
- 85 J. B. Joshi, Chem. Eng. Sci. 2001, 56, 5893–5933.
- 86 J. Joshi, U. P. Veera, C. V. Prasad, D. V. Phanikumar, N. S. Deshphande, S. S. Thakre, B. N. Thorat, PINSA 1998, 4, 441–567.
- 87 A. V. Kulkarni, J. B. Joshi, Chem. Eng. Res. Des. 2011, 89, 1972–1985.
- 88 E. Molina, A. Contreras, Y. Chisti, Trans. I. Chem. Eng. 1999, 77, 27–32.
- 89 C. Xing, T. Wang, J. Wang, Chem. Eng. Sci. 2013, 95, 313–322.
- 90 J. Klein, A. A. Vicente, J. A. Teixeira, Can. J. Chem. Eng. 2003, 81, 1–11.
- 91 M. Leupold, S. Hindersin, M. Kerner, D. Hanelt, Bioprocess Biosyst. Eng. 2013, 36, 1653–1663.
- 92 M. H. A. Michels, P. M. Slegers, M. H. Vermue, R. H. Wijffels, Algal Res. 2014, 4, 12–18.
- 93 R. Kandilian, A. Soulies, J. Pruvost, B. Rousseau, J. Legrand, L. Pilon, Chem. Eng. Sci. 2016, 146, 357–368.
- 94 L. Lopez-Rosales, F. Garcia-Camacho, A. Sanchez-Miron, A. Contreras-Gomez, E. Molina-Grima, Bioresour. Technol. 2015, 197, 375–382.
- 95 M. H. A. Michels, A. J. van der Goot, M. H. Vermue, R. H. Wijffels, J. Appl. Phycol. 2016, 28, 53–62.
- 96 Z. Yang, M. del Ninno, Z. Wen, H. Hu, J. Appl. Phycol. 2014, 26, 2097–2107.
- 97 M. Scarsella, G. Torzillo, A. Cicci, G. Belotti, P. De Filippis, M. Bravi, Process Biochem. 2012, 47, 1603–1611.
- 98 G. Torzillo, B. Pushparaj, J. Masojidek, A. Vonshak, Biotechnol. Bioprocess Eng. 2003, 8, 338–348.
- 99
L. Vandanjon, N. Rossignol, P. Jaouen, J. M. Robert, F. Quemeneur, Biotechnol. Bioeng. 1999, 63, 1–9.
10.1002/(SICI)1097-0290(19990405)63:1<1::AID-BIT1>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 100 R. Krishna, J. M. van Baten, Trans. I. Chem. Eng. 2001, 79, 283–309.
- 101 V. V. Ranade, R. P. Utikar, Chem. Eng. Sci. 1999, 54, 5237–5244.
- 102 H. Luo, M. H. Al-Dahhan, Chem. Eng. Sci. 2011, 66, 907–923.
- 103 J. P. P. Bitog, I. B. Lee, H. M. Oh, S. W. Hong, I. H. Seo, K. S. Kwon, Biosyst. Eng. 2014, 122, 42–61.
- 104 D. D. McClure, J. M. Kavangh, D. F. Fletcher, G. W. Barton, Chem. Eng. Technol. 2014, 37, 131–140.
- 105 A. Bertucco, E. Sforza, V. Fiorenzato, M. Strumendo, AIChE J. 2015, 61, 2702–2710.
- 106 T. Wang, J. Wang, Chem. Eng. Sci. 2007, 62, 7107–7118.
- 107 D. Darmana, N. G. Deen, J. A. M. Kuipers, Chem. Eng. Sci. 2005, 60, 3383–3404.
- 108 G. Olivieri, L. Gargiulo, P. Lettieri, L. Mazzei, P. Salatino, A. Marzocchella, Biotechnol. Prog. 2015, 31, 1259–1272.
- 109 V. V. Buwa, V. V. Ranade, Chem. Eng. Sci. 2002, 57, 4715–4736.
- 110 S. Besbes, M. E. Hajem, H. B. Aissia, J. Y. Champagne, J. Jay, Chem. Eng. Sci. 2015, 126, 560–572.
- 111 A. Gupta, S. Roy, Chem. Eng. J. 2013, 225, 818–836.
- 112 S. M. Mortuza, S. P. Gent, A. Kommareddy, G. A. Anderson, J. Fuel Cell Sci. Technol. 2012, 9, 1–8.
- 113 Q. H. Zhang, X. Wu, S. Z. Xue, Z. H. Wang, C. H. Yan, W. Cong, Biotechnol. Prog. 2013, 29, 127–134.
- 114 J. Huang, F. Feng, M. Wan, J. Ying, Y. Li, X. Qu, R. Pan, G. Shen, W. Li, Bioresour. Technol. 2015, 182, 151–159.
- 115 H. J. Choi, S. M. Lee, Bioprocess Biosyst. Eng. 2014, 37, 697–705.
- 116 G. Yu, Y. Li, G. Shen, W. Wang, C. Lin, H. Wu, Z. Chen, J. Appl. Phycol. 2009, 21, 719–727.
- 117 E. Sforza, B. Gris, C. E. de Farias Silva, T. Morosinotto, A. Bertucco, Chem. Eng. Trans. 2014, 38, 211–216.
- 118 A. Soulies, J. Legrand, H. Marec, J. Pruvost, C. Castelain, T. Burghelea, J. Cornet, Biotechnol Prog. 2016, 32 (2), 247–261. DOI: 10.1002/btpr.2244
- 119 B. Gourich, N. E. Azher, C. Vial, M. B. Soulami, M. Ziyad, Can. J. Chem. Eng. 2006, 84, 539–547.
- 120 J. Pruvost, G. Van Vooren, G. Cogne, J. Legrand, Bioresour. Technol. 2009, 100, 5988–5995.
- 121 D. D. McClure, N. Aboudha, J. M. Kavanagh, D. F. Fletcher, G. W. Barton, Chem. Eng. J. 2015, 264, 291–301.
- 122 B. N. Thorat, J. B. Joshi, Exp. Therm. Fluid Sci. 2004, 28, 423–430.
- 123 V. V. Ranade, Y. Tayalia, Chem. Eng. Sci. 2001, 56, 1667–1675.
- 124 J. M. Van Baten, R. Krishna, Chem. Eng. Technol. 2002, 25, 1081–1086.
- 125 I. Seo, I. Lee, H. Hwang, S. Hong, J. P. Bitog, K. Kwon, C. Lee, Z. Kim, J. L. Cuello, Biosyst. Eng. 2012, 113, 229–241.
- 126 E. K. Nauha, V. Alopaeus, Chem. Eng. J. 2013, 229, 559–568.
- 127 M. Simcik, A. Mota, M. C. Ruzicka, A. Vicente, J. Teixeira, Chem. Eng. Sci. 2011, 66, 3268–3279.
- 128 L. Xu, R. Liu, F. Wang, C. Z. Liu, Bioresour. Technol. 2012, 119, 300–305.
- 129 X. Wu, J. C. Merchuk, Chem. Eng. Sci. 2004, 59, 2899–2912.
- 130 G. Y. Rodriguez, M. Valverde-Ramirez, C. E. Mendes, R. Bettega, A. C. Badino, Bioprocess Biosyst. Eng. 2015, 38, 2063–2075.
- 131 M. Simonnet, C. Gentric, E. Olmos, N. Midoux, Chem. Eng. Process. 2008, 47, 1726–1737.
- 132 M. Mohajerani, M. Mehrvar, F. Ein-Mozaffari, Can. J. Chem. Eng. 2012, 90, 1611–1630.
- 133 A. Soman, Y. Shastri, Appl. Energy 2015, 140, 246–255.
- 134 M. Blazej, G. M. C. Glover, S. C. Generalis, J. Markos, Chem. Eng. Process. 2004, 43, 137–144.
- 135 J. M. Van Baten, J. Ellenberger, R. Krishna, Can. J. Chem. Eng. 2003, 81, 660–668.
- 136 M. R. Rampure, V. V. Buwa, V. V. Ranade, Can. J. Chem. Eng. 2003, 81, 692–706.