Bio-Inspired Passive Drag Reduction Techniques: A Review
Corresponding Author
Hayder A. Abdulbari
Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Gambang 26300, Kuantan, Pahang, Malaysia
Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Gambang 26300, Kuantan, Pahang, MalaysiaSearch for more papers by this authorHassan D. Mahammed
Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Gambang 26300, Kuantan, Pahang, Malaysia
Search for more papers by this authorZulkefli B. Y. Hassan
Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Gambang 26300, Kuantan, Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Hayder A. Abdulbari
Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Gambang 26300, Kuantan, Pahang, Malaysia
Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Gambang 26300, Kuantan, Pahang, MalaysiaSearch for more papers by this authorHassan D. Mahammed
Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Gambang 26300, Kuantan, Pahang, Malaysia
Search for more papers by this authorZulkefli B. Y. Hassan
Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Gambang 26300, Kuantan, Pahang, Malaysia
Search for more papers by this authorAbstract
It was believed that fluid flow and the laminar to turbulent transition delay were more easily controlled on smooth surfaces until the discovery of the grooved shark skin surface that changed the whole idea of how smooth the surface should be to have high flow in submerged surfaces. Riblets have gained renewed interest in academic fields of study and in industry due to several advantages in manipulating the turbulence boundary layer. Drag reduction using small, longitudinally grooved surface provides up to 10 % lower energy consumption in several applications. This review provides an overview of the mechanism of drag reduction with riblets, the different geometries and types, and the latest developments in drag reduction riblet technology.
References
- 1
M. Gad-el-Hak, in Frontiers in Experimental Fluid Mechanics (Ed: M. Gad-el-Hak), Springer, Berlin 1989, 211–290.
10.1007/978-3-642-83831-6_5 Google Scholar
- 2 J. D. Anderson Jr., Phys. Today 2005, 58 (12), 42–48.
- 3 M. Gad-el-Hak, Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, New York 2007.
- 4 G. E. Mase, Schaum's Outline of Theory and Problems of Continuum Mechanics, McGraw-Hill, New York 1970.
- 5
J. L. Zakin, W. Ge, in Polymer Physics, John Wiley & Sons, New York 2010, 89–127.
10.1002/9780470600160.ch2 Google Scholar
- 6 J. Cousteix, in Special Course on Skin Friction Drag Reduction (AGARD-R-786) (Ed: J. Cousteix), Advisory Group for Aerospace Research and Development (AGARD), Neuilly sur Seine 1992, 1–39.
- 7 S. J. Lee, S. H. Lee, Exp. Fluids 2001, 30 (2), 153–166. DOI: 10.1007/s003480000150
- 8 F. Gallego, S. N. Shah, J. Petrol. Sci. Eng. 2009, 65 (3–4), 147–161. DOI: 10.1016/j.petrol.2008.12.013
- 9 N. H. Abdurahman, Y. M. Rosli, N. H. Azhari, B. A. Hayder, J. Petrol. Sci. Eng. 2012, 90–91, 139–144. DOI: 10.1016/j.petrol.2012.04.025
- 10 A. P. Szilas, in Developments in Petroleum Science, Elsevier, Amsterdam 1986, 279–340.
- 11 J. K. Fink, Oil Field Chemicals, Gulf Professional Publishing, Burlington, MA 2003.
- 12 J. K. Fink, Petroleum Engineer's Guide to Oil Field Chemicals and Fluids, Gulf Professional Publishing, Waltham, MA 2012.
- 13 H. A. Abdulbari, R. M. Yunus, N. Norahzan, IEEE Colloquium on Humanities, Science and Engineering (CHUSER), Kota Kinabalu, December 2012.
- 14 H. Abdulbari, N. Kamarulizam, A. H. Nour, Chem. Ind. Chem. Eng. Quart. 2012, 18 (3), 361–371. DOI: 10.2298/ciceq111206012a
- 15 T. Theodorsen, Proc. of the 2nd Midwestern Conf. on Fluid Mechanics, Ohio State University, OH 1952, 1–9.
- 16
H. E. Fiedler, in Advances in Turbulence (Eds: C. B. Geneviève), Springer, Heidelberg 1987, 320–336.
10.1007/978-3-642-83045-7_37 Google Scholar
- 17
R. Falco, in 21st Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Washington, DC 1983. DOI: 10.2514/6.1983-377
10.2514/6.1983‐377 Google Scholar
- 18 B. A. Toms, in Proc. of the Int. Congr. on Rheology, North Holland Publisher, Amsterdam 1948, (2), 135–141.
- 19
M. Gad-el-Hak, Appl. Mech. Rev. 1996, 49 (7), 365–380. DOI: 10.1115/1.3101931
10.1115/1.3101931 Google Scholar
- 20 E. Coustols, A. M. Savill, in Special Course on Skin Friction Drag Reduction (AGARD-R-786) (Ed: J. Cousteix), Advisory Group for Aerospace Research and Development (AGARD), Neuilly sur Seine 1992, 8, 1–54.
- 21 V. R. Arunachalam, R. L. Hummel, J. W. Smith, Can. J. Chem. Eng. 1972, 50 (3), 337–343. DOI: 10.1002/cjce.5450500305
- 22 P. S. Virk, AIChE J. 1975, 21 (4), 625–656. DOI: 10.1002/aic.690210402
- 23
Y. Wang, B. Yu, J. L. Zakin, H. Shi, Adv. Mech. Eng. 2011, 31, 1–17. DOI: 10.1155/2011/478749
10.1155/2011/478749 Google Scholar
- 24 C. B. Lester, Oil Gas J. 1985, 83 (5), 51.
- 25 M. S. N. Kazi, G. G. Duffy, X. D. Chen, Chem. Eng. J. 1999, 73 (3), 247–253. DOI: 10.1016/s1385-8947(99)00047-9
- 26 A. Al-Sarkhi, T. J. Hanratty, Int. J. Multiphase Flow 2001, 27 (7), 1151–1162. DOI: 10.1016/s0301-9322(00)00071-9
- 27 V. T. Truong, Drag Reduction Technologies, Aeronautical and Maritime Research Laboratory, Canberra 2001.
- 28 C. M. White, M. G. Mungal, Ann. Rev. Fluid Mech. 2008, 40 (1), 235–256. DOI: 10.1146/annurev.fluid.40.111406.102156
- 29
J. W. Hoyt, in Viscous Drag Reduction in Boundary Layers (Ed: D. Bushnell), American Institute of Aeronautics and Astronautics, Washington, DC 1990, 413–432.
10.2514/5.9781600865978.0413.0432 Google Scholar
- 30 H. A. Abdulbari, R. M. Yunus, N. H. Abdurahman, A. Charles, J. Ind. Eng. Chem. 2013, 19 (1), 27–36. DOI: 10.1016/j.jiec.2012.07.023
- 31
P. Diamond, J. Harvey, J. Katz, D. Nelson, P. Steinhardt, Drag Reduction By Polymer Additives, Report 22102 JSR-89-720, US Department of Defense, Washington, DC 1992.
10.21236/ADA258867 Google Scholar
- 32 N. P. Cheremisinoff, P. N. Cheremisinoff, Handbook of Applied Polymer Processing Technology, CRC Press, Boca Raton, FL 1996.
- 33 S.-H. Cho, C.-S. Tae, M. Zaheeruddin, Energy Convers. Manage. 2007, 48 (3), 913–918. DOI: 10.1016/j.enconman.2006.08.021
- 34 G. A. Agoston, W. H. Harte, H. C. Hottel, W. A. Klemm, K. Mysels, H. Pomeroy, J. Thompson, Ind. Eng. Chem. 1954, 46 (5), 1017–1019. DOI: 10.1021/ie50533a055
- 35 R. Sharma, Surfactant Adsorption and Surface Solubilization, American Chemical Society, Washington, DC 1994.
- 36
P. C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd revised and expanded ed., CRC Press, New York 1997.
10.1201/9781315274287 Google Scholar
- 37 J. L. Zakin, B. Lu, H.-W. Bewersdorff, Rev. Chem. Eng. 1998, 14 (4–5), 253–320. DOI: 10.1515/revce.1998.14.4-5.253
- 38 N. Yusuf, T. Al-Wahaibi, Y. Al-Wahaibi, A. Al-Ajmi, A. R. Al-Hashmi, A. S. Olawale, I. A. Mohammed, Int. J. Heat Fluid Flow 2012, 37 (0), 74–80. DOI: 10.1016/j.ijheatfluidflow.2012.04.014
- 39 S. J. Rossetti, R. Pfeffer, AIChE J. 1972, 18 (1), 31–39. DOI: 10.1002/aic.690180107
- 40
R. S. Kane, in Viscous Drag Reduction in Boundary Layers (Eds: D. M. Bushnell), American Institute of Aeronautics and Astronautics, Washington, DC 1990, 433–456.
10.2514/5.9781600865978.0433.0456 Google Scholar
- 41 R. C. Vaseleski, A. B. Metzner, AIChE J. 1974, 20 (2), 301–306. DOI: 10.1002/aic.690200214
- 42 S. P. Wilkinson, J. B. Anders, B. S. Lazos, D. M. Bushnell, Int. J. Heat Fluid Flow 1988, 9 (3), 266–277. DOI: 10.1016/0142-727X(88)90037-9
- 43 M. J. Walsh, in Viscous Drag Reduction in Boundary Layers (Eds: D. M. Bushnell), American Institute of Aeronautics and Astronautics, Washington, DC 1990, 203–261.
- 44 A. M. Savill, in Structure of Turbulence and Drag Reduction, Springer, Heidelberg 1990, 429–465.
- 45
M. R. Raupach, R. A. Antonia, S. Rajagopalan, Appl. Mech. Rev. 1991, 44 (1), 1. DOI: 10.1115/1.3119492
10.1115/1.3119492 Google Scholar
- 46 G. E. A. Meier, G. H. Schnerr, E. Coustols, in Control of Flow Instabilities and Unsteady Flows, Springer, Berlin 1996, 155–202.
- 47 D. M. Bushnell, Proc. Inst. Mech. Eng., Part G 2003, 217 (1), 1–18. DOI: 10.1243/095441003763031789
- 48 F. E. Fish, G. V. Lauder, Ann. Rev. Fluid Mech. 2006, 38 (1), 193–224. DOI: 10.1146/annurev.fluid.38.050304.092201
- 49
A. R. Paul, S. Joshi, A. Jindal, S. P. Maurya, A. Jain, Sci. World J. 2013, 2013. DOI: 10.1155/2013/523759
10.1155/2013/523759 Google Scholar
- 50 E. Coustols, A. M. Savill, in Special Course on Skin Friction Drag Reduction (Ed: J. Cousteix), Advisory Group for Aerospace Research and Development (AGARD), Neuilly sur Seine 1992, 287.
- 51 K. Watanabe, T. Takayama, S. Ogata, S. Isozaki, AIChE J. 2003, 49 (8), 1956–1963. DOI: 10.1002/aic.690490805
- 52
A. Hamdouni, J. P. Bonnet, Appl. Sci. Res. 1993, 19 (3–4), 369–385. DOI: 10.1007/978-94-011-1701-2_11
10.1007/978‐94‐011‐1701‐2_11 Google Scholar
- 53 A. Pollard, Prog. Aerosp. Sci. 1998, 33 (11–12), 689–708. DOI: 10.1016/S0376-0421(97)00008-0
- 54
I. V. Gudilin, Y. A. Lashkov, V. G. Shumilkin, Fluid Dyn. 1995, 30 (3), 366–371. DOI: 10.1007/bf02282448
10.1007/bf02282448 Google Scholar
- 55 J. Anders, J. Hefner, D. Bushnell, in 22nd Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Washington, DC 1984.
- 56 M. J. Walsh, J. B. Anders, Appl. Sci. Res. 1989, 46 (3), 255–262. DOI: 10.1007/bf00404822
- 57 A. Sahlin, A. V. Johansson, P. H. Alfredsson, Phys. Fluids 1988, 31 (10), 2814–2820. DOI: 10.1063/1.866989
- 58
T. B. Lynn, D. A. Gerich, D. W. Bechert, in Advances in Turbulence 3 (Eds: A. Johansson), Springer, Berlin 1991, 472–480.
10.1007/978-3-642-84399-0_51 Google Scholar
- 59 P. R. Spalart, M. Strelets, A. Travin, Int. J. Heat Fluid Flow 2006, 27 (5), 902–910. DOI: 10.1016/j.ijheatfluidflow.2006.03.014
- 60
B. Eckhardt, V. I. Kornilov, A. V. Boiko, in Advances in Turbulence XII (Ed: B. Eckhardt), Springer, Berlin 2009, 205–208.
10.1007/978-3-642-03085-7 Google Scholar
- 61 B. Vasudevan, A. Prabhu, R. Narasimha, Exp. Fluids 1992, 12 (3), 200–208. DOI: 10.1007/bf00188259
- 62 J. Gray, J. Exp. Biol. 1936, 13 (2), 192–199.
- 63
M. O. Kramer, J. Am. Soc. Nav. Eng. 1960, 72 (1), 25–34. DOI: 10.1111/j.1559-3584.1960.tb02356.x
10.1111/j.1559-3584.1960.tb02356.x Google Scholar
- 64 M. Gad-el-Hak, Exp. Therm. Fluid Sci. 1998, 16 (1–2), 141–156. DOI: 10.1016/S0894-1777(97)10006-1
- 65
S. Xu, D. Rempfer, J. Lumley, J. Fluid Mech. 2003, 478 (1), 11–34. DOI: 10.1017/s0022112002003324
10.1017/s0022112002003324 Google Scholar
- 66 F. W. Puryear, Boundary Layer Control-drag Reduction by Use of Compliant Coatings, David Taylor Model Basin Report, National Aeronautics and Space Administration, Washington, DC 1962.
- 67 C. R. Nisewanger, Flow Noise and Drag Measurements of Vehicle with Compliant Coating, U.S. Naval Ordenance Test Station China Lake, CA 1964.
- 68 H. Ritter, L. T. Messum, Water Tunnel Measurements of Turbulent Skin Friction on Six Different Compliant Surfaces of 1 Ft Length, ARL/N4/G/HY/9/7, British Admiralty Research Laboratory, London 1964.
- 69 A. O. Steven, Prediction of Compliant Wall Drag Reduction, Part II, Technical Report, National Aeronautics and Space Administration (NASA), Washington, DC 1979.
- 70 S. J. Kline, W. C. Reynolds, F. A. Schraub, P. W. Runstadler, J. Fluid Mech. 1967, 30 (4), 741–773. DOI: 10.1017/s0022112067001740
- 71 M. Fischer, L. Weinstein, D. Bushnell, R. Ash, in 8th Fluid and PlasmaDynamics Conference, American Institute of Aeronautics and Astronautics, Washington, DC 1975.
- 72 P. W. Carpenter, A. D. Garrad, J. Fluid Mech. 1985, 155, 465. DOI: 10.1017/s0022112085001902
- 73 P. W. Carpenter, A. D. Garrad, J. Fluid Mech. 1986, 170, 199–232. DOI: 10.1017/S002211208600085X
- 74 M. Gad-el-Hak, Prog. Aerosp. Sci. 2002, 38 (1), 77–99. DOI: 10.1016/s0376-0421(01)00020-3
- 75 M. L. McMillan, H. C. Hershey, R. A. Baxter, in Chemical Engineering Progress Symposium Series, American Institute of Chemical Engineers, New York 1971, 27–44.
- 76 M. Rodríguez, J. Xue, L. M. Gouveia, A. J. Müller, A. E. Sáez, J. Rigolini, B. Grassl, Colloids Surf. A 2011, 373 (1–3), 66–73. DOI: 10.1016/j.colsurfa.2010.10.024
- 77
E. Soali, A. B. Hayder, Z. Hasan, M. Rahman, J. Appl. Sci. 2010, 10 (21), 2683–2687. DOI: 10.3923/jas.2010.2683.2687
10.3923/jas.2010.2683.2687 Google Scholar
- 78 A. Krope, L. C. Lipus, Appl. Therm. Eng. 2010, 30 (8–9), 833–838. DOI: 10.1016/j.applthermaleng.2009.12.012
- 79 S. Hofmann, P. Stern, J. Myska, Rheol. Acta 1994, 33 (5), 419–430. DOI: 10.1007/bf00366584
- 80 I. Harwigsson, M. Hellsten, US Patent WO 1996028527 A1, 1996.
- 81 H. A. Abdulbari, R. B. M. Yunus, T. S. Hadi, Am. J. Appl. Sci. 2010, 7 (10), 1310–1316. DOI: 10.3844/ajassp.2010.1310.1316
- 82 Y. Zhang, J. Schmidt, Y. Talmon, J. L. Zakin, J. Colloid Interface Sci. 2005, 286 (2), 696–709. DOI: 10.1016/j.jcis.2005.01.055
- 83 J. J. Wei, Y. Kawaguchi, F. C. Li, B. Yu, J. L. Zakin, D. J. Hart, Y. Zhang, Int. J. Heat Mass Transfer 2009, 52 (15–16), 3547–3554. DOI: 10.1016/j.ijheatmasstransfer.2009.03.008
- 84 R. Pal, AIChE J. 1993, 39 (11), 1754–1764. DOI: 10.1002/aic.690391103
- 85 H. K. Moon, T. O'Connell, B. Glezer, J. Eng. Gas Turbines Power 2000, 122 (2), 307–313. DOI: 10.1115/1.483208
- 86 P. M. Ligrani, J. L. Harrison, G. I. Mahmmod, M. L. Hill, Phys. Fluids 2001, 13 (11), 3442. DOI: 10.1063/1.1404139
- 87 G. I. Mahmood, P. M. Ligrani, Int. J. Heat Mass Transfer 2002, 45 (10), 2011–2020. DOI: 10.1016/S0017-9310(01)00314-3
- 88 S. Y. Won, Q. Zhang, P. M. Ligrani, Phys. Fluids 2005, 17 (4), DOI: 10.1063/1.1872073
- 89 P. M. Ligrani, G. I. Mahmood, J. L. Harrison, C. M. Clayton, D. L. Nelson, Int. J. Heat Mass Transfer 2001, 44 (23), 4413–4425. DOI: 10.1016/S0017-9310(01)00101-6
- 90 M. A. Elyyan, A. Rozati, D. K. Tafti, Int. J. Heat Mass Transfer 2008, 51 (11–12), 2950–2966. DOI: 10.1016/j.ijheatmasstransfer.2007.09.013
- 91 T. S. Griffith, L. Al-Hadhrami, J.-C. Han, J. Turbomach. 2003, 125 (3), 555–563. DOI: 10.1115/1.1571850
- 92 W. Rohlfs, H. D. Haustein, O. Garbrecht, R. Kneer, Int. J. Heat Mass Transfer 2012, 55 (25–26), 7728–7736. DOI: 10.1016/j.ijheatmasstransfer.2012.07.081
- 93 B. Yu, F. Li, Y. Kawaguchi, Int. J. Heat Fluid Flow 2004, 25 (6), 961–974. DOI: 10.1016/j.ijheatfluidflow.2004.02.029
- 94 Z. Xu, S. Z. Li, X. Y. Wu, X. J. Zhao, Adv. Mater. Res. 2011, 299–300, 7–11. DOI: 10.4028/www.scientific.net/AMR.299-300.7
- 95 H. Lienhart, M. Breuer, C. Köksoy, Int. J. Heat Fluid Flow 2008, 29 (3), 783–791. DOI: 10.1016/j.ijheatfluidflow.2008.02.001
- 96 Y. Du, V. Symeonidis, G. E. Karniadakis, J. Fluid Mech. 2002, 457, 1–34. DOI: 10.1017/s0022112001007613
- 97 A. Baron, M. Quadrio, Appl. Sci. Res. 1996, 55 (4), 311–326. DOI: 10.1007/bf00856638
- 98 M. Quadrio, P. Ricco, J. Fluid Mech. 2014. 521, 251–271. DOI: 10.1017/S0022112004001855
- 99
N. V. Nikitin, Fluid Dyn. 2000, 35 (2), 185–190. DOI: 10.1007/BF02831425
10.1007/BF02831425 Google Scholar
- 100
F. T. M. Nieuwstadt, R. Akhavan, W. J. Jung, N. Mangiavacchi, in Advances in Turbulence IV, Springer, Berlin 1993, 299–303.
10.1007/978-94-011-1689-3 Google Scholar
- 101 K.-S. Choi, B. R. Clayton, Int. J. Heat Fluid Flow 2001, 22 (1), 1–9. DOI: 10.1016/s0142-727x(00)00070-9
- 102 M. Quadrio, P. Ricco, J. Fluid Mech. 2004, 521, 251–271. DOI: 10.1017/s0022112004001855
- 103 M. Skote, Int. J. Heat Fluid Flow 2014, 50 (0), 352–358. DOI: 10.1016/j.ijheatfluidflow.2014.09.006
- 104 C. K. Liu, Ph.D. Thesis, Stanford University, CA 1966.
- 105 T. D. Bath, Channeled Flow at the Pipe Surface in Gas Transmission Pipelines, Midwest Research Institute, Kansas City, MO 1968.
- 106 A. M. Savill, in Flow Visualization IV: Proc. of the 4th Int. Symp. on Flow Visualization, Springer, Berlin 1987, 303–308.
- 107 P. Vukoslavcevic, J. M. Wallace, J. L. Balint, AIAA J. 1992, 30 (4), 1119–1122. DOI: 10.2514/3.11035
- 108 F. T. M. Nieuwstadt, W. Wolthers, H. Leijdens, K. Krishna Prasad, A. Schwarz-van Manen, Exp. Fluids 1993, 15 (1), 17–26. DOI: 10.1007/BF00195591
- 109 M. J. Walsh, in 20th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Washington, DC 1982.
- 110 M. Walsh, A. Lindemann, in 22nd Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Washington, DC 1984.
- 111
L. Ji-sheng, Z. Heng, Appl. Math. Mech. 1993, 14 (11), 993–1001. DOI: 10.1007/bf02476547
10.1007/bf02476547 Google Scholar
- 112 D. W. Bechert, M. Bruse, W. Hage, J. G. T. Van Der Hoeven, G. Hoppe, J. Fluid Mech. 1997, 338, 59–87. DOI: 10.1017/s0022112096004673
- 113 P. Luchini, F. Manzo, A. Pozzi, J. Fluid Mech. 1991, 228, 87–109. DOI: 10.1017/S0022112091002641
- 114 S. K. Robinson, Ph.D. Thesis, Stanford University, CA 1991.
- 115 P. Nitschke, Experimental investigation of the turbulent flow in smooth and longitudinal grooved tubes, NASA TM77480, National Aeronautics and Space Administration, Washington, DC 1983.
- 116 D. Hooshmand, R. Youngs, J. M. Wallace, J. L. Balint, in 21st Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (AIAA), Washington, DC 1983. DOI: 10.2514/6.1983-230
- 117 K.-S. Choi, J. Fluid Mech. 1989, 208 (1), 417. DOI: 10.1017/s0022112089002892
- 118 A. Baron, M. Quadrio, Int. J. Heat Fluid Flow 1993, 14 (3), 223–230. DOI: 10.1016/0142-727X(93)90052-O
- 119 S.-R. Park, J. M. Wallace, AIAA J. 1994, 32 (1), 31–38. DOI: 10.2514/3.11947
- 120 Y. Suzuki, N. Kasagi, AIAA J. 1994, 32 (9), 1781–1790. DOI: 10.2514/3.12174
- 121 D. W. Bechert, M. Bartenwerfer, J. Fluid Mech. 1989, 206 (1), 105–129. DOI: 10.1017/S0022112089002247
- 122 E. V. Bacher, C. R. Smith, AIAA J. 1986, 24 (8), 1382–1385. DOI: 10.2514/3.48695
- 123 J. Gallagher, A. Thomas, in 2nd Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, Washington, DC 1984, 9.
- 124 S. Tardu, T. V. Truong, B. Tanguay, Appl. Sci. Res. 1993, 50 (3–4), 189–213. DOI: 10.1007/BF00850557
- 125 S. F. Tardu, Appl. Sci. Res. 1995, 54 (4), 349–385. DOI: 10.1007/bf00863518
- 126 A. Baron, M. Quadrio, Int. J. Heat Fluid Flow 1997, 18 (2), 188–196. DOI: 10.1016/S0142-727X(96)00087-2
- 127 D. W. Bechert, Int. Conf. on Turbulent Drag Reduction by Passive Means, London, September 1987.
- 128 D. W. Bechert, M. Bruse, W. Hage, Exp. Fluids 2000, 28 (5), 403–412. DOI: 10.1007/s003480050400
- 129
L. Djenidi, J. Liandrat, F. Anselmet, L. Fulachier, in Advances in Turbulence 2 (Eds: H.-H. Fernholz), Springer, Berlin 1989, 438–442.
10.1007/978-3-642-83822-4_65 Google Scholar
- 130 H. Choi, Ph.D. Thesis, Stanford University, CA 1993.
- 131 J.-J. Wang, S.-l. Lan, G. Chen, Fluid Dyn. Res. 2000, 27 (4), 217–229. DOI: 10.1016/S0169-5983(00)00009-5
- 132 H. Ma, Q. Tian, H. Wu, J. Therm. Sci. 2005, 14 (3), 193–197. DOI: 10.1007/s11630-005-0001-7
- 133 A. V. Boiko, K. H. Jung, H. H. Chun, I. Lee, J. Mech. Sci. Technol. 2007, 21 (1), 196–206. DOI: 10.1007/bf03161725
- 134 B. Bhushan, Philos. Trans.: Math., Phys. Eng. Sci. 2009, 367 (1893), 1445–1486. DOI: 10.1098/rsta.2009.0011
- 135 B. Dean, B. Bhushan, Philos. Trans.: Math., Phys. Eng. Sci. 2010, 368 (1929), 4775–4806. DOI: 10.1098/rsta.2010.0201
- 136 G. D. Bixler, B. Bhushan, Adv. Funct. Mater. 2013, 23 (36), 4507–4528. DOI: 10.1002/adfm.201203683
- 137 P. Ball, Nature 1999, 400 (6744), 507–509. DOI: 10.1038/22883
- 138 W. E. Reif, Neues Jahrb. Geol. Palaeontol. 1982, 164, 172–183.
- 139 W.-E. Reif, A. Dinkelacker, Neues Jahrb. Geol. Palaeontol. 1982, 16, 184–187.
- 140 J. J. Videler, Symp. Soc. Exp. Biol. 1995, 49, 1–20.
- 141 F. E. Fish, Bioinspiration Biomimetics 2006, 1 (2), R17–25. DOI: 10.1088/1748-3182/1/2/R01
- 142 M. J. Walsh, NASA Langley Symposium on Aerodynamics, Hampton, VA, April 1985.
- 143 X. Xu, V. P. Carey, J. Thermophys. Heat Transfer 1990, 4 (4), 512–520. DOI: 10.2514/3.215
- 144 D. Moalem-Maron, R. Semiat, S. Sideman, Desalination 1980, 34 (3), 289–309. DOI: 10.1016/S0011-9164(00)88595-1
- 145 S. Nishimoto, B. Bhushan, RSC Adv. 2013, 3 (3), 671. DOI: 10.1039/c2ra21260a
- 146 K. Liu, L. Jiang, Ann. Rev. Mater. Res. 2012, 42 (1), 231–263. DOI: 10.1146/annurev-matsci-070511-155046
- 147 G. F. Naterer, P. S. Glockner, D. Thiele, S. Chomokovski, G. Venn, G. Richardson, J. Micromech. Microeng. 2005, 15 (3), 501–513. DOI: 10.1088/0960-1317/15/3/010
- 148 L. James, K. Paul, R. Richard, in 38th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Washington, DC 2000.
- 149
F. Klocke, B. Feldhaus, S. Mader, Prod. Eng. 2007, 1 (3), 233–237. DOI: 10.1007/s11740-007-0031-y
10.1007/s11740‐007‐0031‐y Google Scholar
- 150
K. Wang, B. Song, G. Pan, Mech. Eng. 2005, 27 (2), 18–20. DOI: 10.6052/1000-0992-2003-221
10.6052/1000‐0992‐2003‐221 Google Scholar
- 151 C. Lietmeyer, B. Denkena, T. Krawczyk, R. Kling, L. Overmeyer, B. Wojakowski, E. Reithmeier, R. Scheuer, T. Vynnyk, J. R. Seume, J. Turbomach. 2013, 135 (4), 041008–041008. DOI: 10.1115/1.4007590
- 152 T. Ninnemann, W. F. Ng, J. Fluids Eng. 2004, 126 (4), 642–649. DOI: 10.1115/1.1667883
- 153 B. Denkena, J. Köhler, T. Krawczyk, in New Production Technologies in Aerospace Industry (Ed: B. Denkena), Springer, Berlin 2014, 69–74.
- 154 M. Worgull, in Hot Embossing 1 (Ed: J. J. Ramsden), William Andrew Publishing, Boston 2009, 283–306, Ch. 9.
- 155 S.-W. Chen, J.-C. Hsieh, C.-T. Chou, H.-H. Lin, S.-C. Shen, M.-J. Tsai, Sens. Actuators, A 2007, 139 (1–2), 78–87. DOI: 10.1016/j.sna.2007.03.009
- 156
V. D. Nguyen, J. Dickinson, Y. Jean, Y. Chalifour, A. Smaili, A. Page, F. Paquet, in Turbulence Control by Passive Means, Springer, Berlin 1990, 159–172.
10.1007/978-94-009-2159-7_10 Google Scholar
- 157
B. Bhushan, in Biomimetics (Ed: B. Bhushan), Springer, Berlin 2012, 227–265, Ch. 10.
10.1007/978-3-642-25408-6_10 Google Scholar
- 158 L. P. Chamorro, R. E. A. Arndt, F. Sotiropoulos, Renewable Energy 2013, 50 (0), 1095–1105. DOI: 10.1016/j.renene.2012.09.001
- 159 L. Reidy, G. Anderson, in 26th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Washington, DC 1988.
- 160 L. W. Reidy, Flat Plate Reduction in a Water Tunnel Using Riblets, Naval Ocean Systems Center (NOSC), San Diego, CA 1987.
- 161
A. Gyr, E. Coustols, J. Cousteix, in Structure of Turbulence and Drag Reduction, Springer, Berlin 1990, 577–584.
10.1007/978-3-642-50971-1 Google Scholar
- 162 M. C. Gillcrist, L. W. Reidy, Drag and Noise Measurements on an Underwater Vehicle with a Riblet Surface Coating, Naval Ocean Systems Center (NOSC), San Diego, CA 1989.
- 163 E. Coustols, in 2nd Shear Flow Conf., American Institute of Aeronautics and Astronautics, Washington, DC 1989.
- 164 J. J. Rohr, G. W. Andersen, L. W. Reidy, E. W. Hendricks, Exp. Fluids 1992, 13 (6), 361–368. DOI: 10.1007/BF00223243
- 165 G. W. Anderson, J. J. Rohr, S. D. Stanley, J. Fluids Eng. 1993, 115 (2), 213–221. DOI: 10.1115/1.2910126
- 166 W. Kyle, F. Saeed, in 14th Applied Aerodynamics Conf., American Institute of Aeronautics and Astronautics, Washington, DC 1996.
- 167 S. Sundaram, P. Viswanath, N. Subaschandar, AIAA J. 1999, 37 (7), 851–856. DOI: 10.2514/2.7533
- 168 M. J. Walsh, I. W. L. Sellers, C. B. McGinley, J. Aircr. 1989, 26 (6), 570–575. DOI: 10.2514/3.45804
- 169 J. D. McLean, D. N. George-Falvey, P. P. Sullivan, Int. Conf. on Turbulent Drag Reduction by Passive Means, London, September 1987.
- 170 Y. Furuya, I. Nakamura, M. Miyata, Y. Yama, Bull. JSME 1977, 20 (141), 315–322. DOI: 10.1299/jsme1958.20.315
- 171 M. J. Walsh, L. M. Weinstein, AIAA J. 1979, 17 (7), 770–771. DOI: 10.2514/3.61216
- 172 M. J. Walsh, AIAA J. 1983, 21 (4), 485–486. DOI: 10.2514/3.60126
- 173
G. V. Enyutin, Y. A. Lashkov, N. V. Samoilova, I. V. Fadeev, E. A. Shumilkina, Fluid Dyn. 1987, 22 (2), 284–289. DOI: 10.1007/bf01052264
10.1007/bf01052264 Google Scholar
- 174
G. V. Enyutin, Y. A. Lashkov, N. V. Samoilova, I. V. Fadeev, E. A. Shumilkina, Fluid Dyn. 1991, 26 (1), 31–35. DOI: 10.1007/bf01050109
10.1007/bf01050109 Google Scholar
- 175
S. P. Wilkinson, B. S. Lazos, in Turbulence Management and Relaminarisation (Eds: H. W. Liepmann), Springer, Berlin 1988, 121–131.
10.1007/978-3-642-83281-9_9 Google Scholar
- 176 K.-S. Choi, in Turbulence Management and Relaminarisation (Eds: H. W. Liepmann), Springer, Berlin 1988, 149–160.
- 177 K. S. Choi, D. M. Orchard, Exp. Therm. Fluid Sci. 1997, 15 (2), 109–124. DOI: 10.1016/s0894-1777(97)00047-2
- 178 B. Frohnapfel, J. Jovanović, A. Delgado, J. Fluid Mech. 2007, 590, 107–116. DOI: 10.1017/s0022112007008221
- 179
J. Jovanović, B. Frohnapfel, A. Delgado, in Turbulence and Interactions, Springer, Berlin 2010, 191–197.
10.1007/978-3-642-14139-3_23 Google Scholar
- 180 S.-J. Lee, Y.-S. Choi, J. Turbul. 2008, 9 (23), 1–15. DOI: 10.1080/14685240802251517
- 181 E. V. Bacher, C. Smith, in Shear Flow Control Conf., American Institute of Aeronautics and Astronautics, Washington, DC 1985.
- 182 C. J. A. Pulles, K. Krishna Prasad, F. T. M. Nieuwstadt, Appl. Sci. Res. 1989, 46 (3), 197–208. DOI: 10.1007/BF00404817
- 183 M. J. Walsh, J. Aircr. 1990, 27 (6), 572–573. DOI: 10.2514/3.25323
- 184 D. Neumann, A. Dinkelacker, Appl. Sci. Res. 1991, 48 (1), 105–114. DOI: 10.1007/bf01998668
- 185 K. Parker, A. T. Sayers, Proc. Inst. Mech. Eng., Part C 1999, 213 (8), 775–785. DOI: 10.1243/0954406991522392
- 186 R. Laurel, A. Greg, in 26th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Washington, DC 1988.
- 187
K. N. Liu, C. Christodoulou, O. Riccius, D. D. Joseph, in Structure of Turbulence and Drag Reduction, Springer, Berlin 1990, 545–551.
10.1007/978-3-642-50971-1_45 Google Scholar
- 188 B. Dean, B. Bhushan, Appl. Surf. Sci. 2012, 258 (8), 3936–3947. DOI: 10.1016/j.apsusc.2011.12.067
- 189 D. W. Bechert, G. Hoppe, J. G. T. van der Hoeven, R. Makris, Exp. Fluids 1992, 12 (4–5), 251–260. DOI: 10.1007/BF00187303
- 190 R. Grüneberger, W. Hage, Exp. Fluids 2011, 50 (2), 363–373. DOI: 10.1007/s00348-010-0936-7
- 191 C. C. Büttner, U. Schulz, Smart Mater. Struct. 2011, 20 (9), 094016. DOI: 10.1088/0964-1726/20/9/094016
- 192 J. Rohr, G. W. Anderson, L. W. Reidy, Drag Reduct. Fluid Flows 1989, 43–52.
- 193 C. Christodoulou, K. N. Liu, D. D. Joseph, Phys. Fluids A 1991, 3 (5), 995. DOI: 10.1063/1.857980
- 194
H.-W. Bewersdorff, H. Thiel, Appl. Sci. Res. 1993, 19 (3–4), 347–368. DOI: 10.1007/978-94-011-1701-2_10
10.1007/978‐94‐011‐1701‐2_10 Google Scholar
- 195 E. Koury, P. S. Virk, Appl. Sci. Res. 1995, 54 (4), 323–347. DOI: 10.1007/BF00863517
- 196 H. Chen, X. Zhang, D. Che, D. Zhang, X. Li, Y. Li, Adv. Mech. Eng. 2014, 2014, 1–8. DOI: 10.1155/2014/425701
- 197 D.-Y. Zhao, Z.-P. Huang, M.-J. Wang, T. Wang, Y. Jin, J. Mater. Process. Technol. 2012, 212 (1), 198–202. DOI: 10.1016/j.jmatprotec.2011.09.002
- 198 D. Zhang, Y. Li, X. Han, X. Li, H. Chen, Chin. Sci. Bull. 2011, 56 (9), 938–944. DOI: 10.1007/s11434-010-4163-7
- 199 D.-Y. Zhang, Y.-H. Luo, X. Li, H.-W. Chen, J. Hydrodyn., Ser. B 2011, 23 (2), 204–211. DOI: 10.1016/s1001-6058(10)60105-9