The Efficient and Sustainable Pyrolysis and Gasification of Biomass by Catalytic Processes
Corresponding Author
Xinli Tong
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.Search for more papers by this authorHui Chen
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Search for more papers by this authorCorresponding Author
Jianli Hu
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.Search for more papers by this authorYadong Bi
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Search for more papers by this authorZhe Sun
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Search for more papers by this authorWenyuan Fan
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Search for more papers by this authorCorresponding Author
Xinli Tong
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.Search for more papers by this authorHui Chen
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Search for more papers by this authorCorresponding Author
Jianli Hu
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.Search for more papers by this authorYadong Bi
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Search for more papers by this authorZhe Sun
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Search for more papers by this authorWenyuan Fan
Tianjin University of Technology, School of Chemistry and Chemical Engineering, Tianjin, China 300384.
Search for more papers by this authorAbstract
The biomass thermochemical conversion process includes two major approaches: pyrolysis and gasification. The advantages of pyrolysis and gasification of biomass feedstock in the presence of various catalyst systems are critically reviewed. The role of a catalyst in pyrolysis of biomass and its major components cellulose, hemicellulose and lignin is investigated. The discussion is focused on elucidating the reaction mechanisms involved in the formation of aromatics and phenols during catalytic pyrolysis. The pyrolysis performance of two major catalyst systems, metal-containing catalysts and zeolite catalysts, is analyzed. The impact of the catalyst on the deoxygenation efficiency is ascertained. In the catalytic gasification process, two major catalyst systems including alkali metals and noble metal catalysts are employed. This review illustrates the function of the catalyst in improving the yields of syngas and hydrogen and the mechanistic aspects of the reduction of tar and char formed during gasification. Ultimately, the review is intended to introduce the state of art in the biomass thermochemical conversion with an emphasis on the importance of the catalyst in producing value-added products.
References
- 1 G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044ā4098. DOI: 10.1021/cr068360d
- 2 J. C. Serrano-Ruiz, J. A. Dumesic, Energy Environ. Sci. 2011, 4, 83ā99. DOI: 10.1039/C0EE00436G
- 3 L. Petrus, M. A. Noordermeer, Green Chem. 2006, 8, 861ā867. DOI: 10.1039/B605036K
- 4 M. Balat, Energy Sources Part A 2008, 30, 649ā659. DOI: 10.1080/10407780600817592
- 5 D. Sutton, B. Kelleher, J. R. H. Ross, Fuel Process. Technol. 2001, 73, 155ā173. DOI: 10.1016/S0378-3820(01)00208-9
- 6 Y. Shen, K. Yoshikawa, Renewable. Sustainable Energy Rev. 2013, 21, 371ā392. DOI: 10.1016/j.rser.2012.12.062
- 7 P. J. Woolcock, R. C. Brown, Biomass Bioenergy 2013, 52, 54ā84. DOI: 10.1016/j.biombioe.2013.02.036
- 8 G. Maschio, C. Koufopanos, A. Lucchesi, Bioresour. Technol. 1992, 42, 219ā231. DOI: 10.1016/0960-8524(92)90025-S
- 9 C. A. Koufopanos, N. Papayannakos, G. Mashio, A. Lucchesi, Can. J. Chem. Eng. 1991, 69, 907ā915. DOI: 10.1002/cjce.5450690413
- 10 J. D. Adjaye, R. K. Sharma, N. N. Bakhshi, Fuel Process. Technol. 1992, 31, 241ā249. DOI: 10.1016/0378-3820(92)90023-J
- 11 C. P. Masuka, A. Vuori, J. B. son Bredenberg, Holzforschung 1988, 42, 361ā368. DOI: 10.1515/hfsg.1988.42.6.361
- 12 R. Ceylan, J. B. son Bredenberg, Fuel 1982, 61, 377ā382. DOI: 10.1016/0016-2361(82)90054-0
- 13 K. Raveendran, A. Ganesh, Fuel 1996, 75, 1715ā1720. DOI: 10.1016/S0016-2361(96)00158-5
- 14 C. A. Koufopanos, Comm. Eur. Comm., Final Report of the Grant Period 1983ā1986, 1986.
- 15 D. Mohan, C. U. Pittman Jr., P. H. Steele, Energy Fuels 2006, 20, 848ā889. DOI: 10.1021/ef0502397
- 16 M. Balat, M. Balat, E. Kirtay, H. Balat, Energy Convers. Manage. 2009, 50, 3147ā3157. DOI: 10.1016/j.enconman.2009.08.014
- 17 D. A. Bulushev, J. R. H. Ross, Catal. Today 2011, 171, 1ā13. DOI: 10.1016/j.cattod.2011.02.005
- 18 A. Bridgwater, G. Peacocke, Renewable Sustainable Energy Rev. 2000, 4, 1ā73. DOI: 10.1016/S1364-0321(99)00007-6
- 19 S. Czernik, A. V. Bridgwater, Energy Fuels 2004, 18, 590ā598. DOI: 10.1021/ef034067u
- 20 A. V. Bridgwater, Energy Fuels 1992, 6, 113ā120. DOI: 10.1021/ef00032a001
- 21 M. Wright, R. C. Brown, Biofuels, Bioprod. Biorefin. 2007, 1, 191ā200. DOI: 10.1002/bbb.25
- 22
A. Bridgwater, Int. J. Global Energy Issues 2007, 27, 160ā203. DOI: b528855m30177874
b528855m30177874 Google Scholar
- 23 R. Luque, L. Herrero-Davila, J. M. Campelo, J. H. Clark, J. M. Hidalgo, D. Luna, J. M. Marinas, A. A. Romero, Energy Environ. Sci. 2008, 1, 542ā564. DOI: 10.1039/B807094F
- 24 Z. Y. Luo, S. Wang, Y. F. Liao, J. S. Zhou, Y. L. Gu, K. F. Cen, Biomass Bioenergy 2004, 26, 455ā462. DOI: 10.1016/j.biombioe.2003.04.001
- 25 A. Pattiya, Bioresour. Technol. 2011, 102, 1959ā1967. DOI: 10.1016/j.biortech.2010.08.117
- 26 J. Yu, C. Yao, X. Zeng, S. Geng, L. Dong, Y. Wang, S. Gao, G. Xu, Chem. Eng. J. 2011, 168, 839ā847. DOI: 10.1016/j.cej.2011.01.097
- 27 S. H. Jung, S. J. Kim, J. S. Kim, Bioresour. Technol. 2012, 114, 670ā676. DOI: 10.1016/j.biortech.2012.03.044
- 28 A. A. Lappas, V. S. Dimitropoulos, E. V. Antonakou, S. S. Voutetakis, I. A. Vasalos, Ind. Eng. Chem. Res. 2008, 47, 742ā747. DOI: 10.1021/ie060990i
- 29 A. A. Lappas, M. C. Samolada, D. K. Iatridis, S. S. Voutetakis, I. A. Vasalos, Fuel 2002, 81, 2087ā2095. DOI: 10.1016/S0016-2361(02)00195-3
- 30 R. Aguado, M. Olazar, M. J. S. Jose, G. Aguirre, J. Bilbao, Ind. Eng. Chem. Res. 2000, 39, 1925ā1933. DOI: 10.1021/ie990309v
- 31 M. Amutio, G. Lopez, R. Aguado, M. Artetxe, J. Bilbao, M. Olazar, Energy Fuels 2011, 25, 3950ā3960. DOI: 10.1021/ef200712h
- 32 M. Amutio, G. Lopez, R. Aguado, J. Bilbao, M. Olazar, Energy Fuels 2012, 26, 1353ā1362. DOI: 10.1021/ef201662x
- 33 R. Li, Z. P. Zhong, B. S. Jin, A. J. Zheng, Bioresour. Technol. 2012, 119, 324ā330. DOI: 10.1016/j.biortech.2012.05.099
- 34 M. Olazar, R. Aguado, J. Bilbao, A. Barona, AIChE J. 2000, 46, 1025ā1033. DOI: 10.1002/aic.690460514
- 35 C. M. Balonek, J. L. Colby, N. E. Persson, L. D. Schmidt, ChemSusChem 2010, 3, 1355ā1358. DOI: 10.1002/cssc.201000257
- 36 G. V. C. Peacocke, A. V. Bridgwater, Biomass Bioenergy 1994, 7, 147ā154. DOI: 10.1016/0961-9534(94)00054-W
- 37 M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, J. Anal. Appl. Pyrolysis 2007, 78, 104ā116. DOI: 10.1016/j.jaap.2006.05.003
- 38 M. Garcia-Perez, A. Chaala, C. Roy, J. Anal. Appl. Pyrolysis 2002, 65, 111ā136. DOI: 10.1016/S0165-2370(01)00184-X
- 39 Q. Zhang, T. J. Wang, C. Z. Wu, L. L. Ma, Y. Xu, Int. J. Green Energy 2010, 7, 263ā272. DOI: 10.1080/15435071003795972
- 40 A. V. Bridgwater, Biomass Bioenergy 2012, 38, 68ā94. DOI: 10.1016/j.biombioe.2011.01.048
- 41 R. H. Venderbosch, A. R. Ardiyanti, J. Wildschut, A. Oasmaa, H. J. Heeres, J. Chem. Tech. Biotech. 2010, 85, 674ā686. DOI: 10.1002/jctb.2354
- 42 A. Oasmaa, S. Czernik, Energy Fuels 1999, 13, 914ā921. DOI: 10.1021/ef980272b
- 43 H. Zhang, R. Xiao, H. Huang, G. Xiao, Bioresour. Technol. 2009, 100, 1428ā1434. DOI: 10.1016/j.biortech.2008.08.031
- 44 N. Trƶger, M. Krƶger, D. Richter, S. Fƶrster, J. Schrƶder, K. Zech, F. Liemen, R. Stahl, F. Müller-Langer, Biofuels, Bioprod. Biorefin. 2013, 7, 12ā23. DOI: 10.1002/bbb.1371
- 45 M. Song, Z. Zhong, J. Dai, J. Anal. Appl. Pyrolysis 2010, 89, 166ā170. DOI: 10.1016/j.jaap.2010.07.007
- 46 W. Yu, Y. Tang, L. Mo, P. Chen, H. Lou, X. Zheng, Bioresour. Technol. 2011, 102, 8241ā8246. DOI: 10.1016/j.biortech.2011.06.015
- 47 J.-J. Wang, J. Chang, J. Fan, Energy Fuels 2010, 24, 3251ā3255. DOI: 10.1021/ef1000634
- 48 P. T. Williams, N. Nugranad, Energy 2000, 25, 493ā513. DOI: 10.1016/S0360-5442(00)00009-8
- 49 N. Thegarid, G. Fogassy, Y. Schuurman, C. Mirodatos, S. Stefanidis, E. F. Iliopoulou, K. Kalogiannis, A. A. Lappas, Appl. Catal., B 2014, 145, 161ā166. DOI: 10.1016/j.apcatb.2013.01.019
- 50 M. C. Samolada, A. Papafotica, I. A. Vasalos, Energy Fuels 2000, 14, 1161ā1167. DOI: 10.1021/ef000026b
- 51 I. GraƧaĀø F. R. Ribeiro, H. S. Cerqueira, Y. L. Lam, M. B. B. de Almeida, Appl. Catal., B 2009, 90, 556ā563. DOI: 10.1016/j.apcatb.2009.04.010
- 52 C. Branca, P. Giudicianni, C. D. Blasi, Ind. Eng. Chem. Res. 2003, 42, 3190ā3202. DOI: 10.1021/ie030066d
- 53 D. Shen, R. Xiao, S. Gu, K. Luo, RSC Adv. 2011, 1, 1641ā16606. DOI: 10.1039/c1ra00534k
- 54 M. S. Mettler, S. H. Mushrif, A. D. Paulsen, A. D. Javadekar, D. G. Vlachos, P. J. Dauenhauer, Energy Environ. Sci. 2012, 5, 5414ā5424. DOI: 10.1039/c1ee02743c
- 55 J. M. Cho, S. Chu, P. J. Dauenhauerand, G. W. Huber, Green Chem. 2012, 14, 428ā439. DOI: 10.1039/c1gc16222e
- 56 M. S. Mettler, A. D. Paulsen, D. G. Vlachos, P. J. Dauenhauer, Energy Environ. Sci. 2012, 5, 7864ā7868. DOI: 10.1039/c2ee21305b
- 57 M. S. Mettler, A. D. Paulsen, D. G. Vlachos, P. J. Dauenhauer, Green Chem. 2012, 14, 1284ā1288. DOI: 10.1039/c2gc35184f
- 58 A. R. Teixeira, K. G. Mooney, J. S. Kruger, C. L. Williams, W. J. Suszynski, L. D. Schmidt, D. P. Schmidt, P. J. Dauenhauer, Energy Environ. Sci. 2011, 4, 4306ā4321. DOI: 10.1039/c1ee01876k
- 59 D. C. Elliott, Energy Fuels 2007, 21, 1792ā1815. DOI: 10.1021/ef070044u
- 60 Q. Xu, Z. Zhang, S. Zhang, F. Wang, Y. Yan, Chem. Eng. Technol. 2014, 37, 1198ā1204. DOI: 10.1002/ceat.201300158
- 61 E. Antonakou, A. Lappas, M. H. Nilsen, A. Bouzga, M. Stƶcker, Fuel 2006, 85, 2202ā2212. DOI: 10.1016/j.fuel.2006.03.021
- 62 A. Sanna, J. M. AndrĆ©sen, ChemSusChem 2012, 5, 1944ā1957. DOI: 10.1002/cssc.201200245
- 63 H. Park, J.-K. Jeon, D. Suh, Y.-W. Suh, H. Heo, Y.-K. Park, Catal. Surv. Asia 2011, 15, 161ā180. DOI: 10.1007/s10563-011-9119-7
- 64 E. Taarning, C. M. Osmundsen, X. Yang, B. Voss, S. I. Andersen, C. H. Christensen, Energy Environ Sci. 2011, 4, 793ā804. DOI: 10.1039/C004518G
- 65 K. Smets, A. Roukaerts, J. Czech, G. Reggers, S. Schreurs, R. Carleer, J. Yperman, Biomass Bioenergy 2013, 57, 180ā190. DOI: 10.1016/j.biombioe.2013.07.001
- 66 N. Shimada, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2008, 81, 80ā87. DOI: 10.1016/j.jaap.2007.09.005
- 67
H. J. Park, H. S. Heo, Y.-K. Park, J.-H. Yim, J.-K. Jeon, J. Park, C. Ryu, S.-S. Kim, Bioresour. Technol. 2010, 101, S83āS85. DOI: 10.1016/j.biortech.2009.06.103
10.1016/j.biortech.2009.06.103 Google Scholar
- 68 F.-X. Collard, J. Blin, A. Bensakhria, J. Valette, J. Anal. Appl. Pyrolysis 2012, 95, 213ā226. DOI: 10.1016/j.jaap.2012.02.009
- 69 L. Li, X. Ma, Q. Xu, Z. Hu, Bioresour. Technol. 2013, 142, 469ā474. DOI: 10.1016/j.biortech.2013.05.080
- 70 E. F. Iliopoulou, S. D. Stefanidis, K. G. Kalogiannis, A. Delimitis, A. A. Lappas, K. S. Triantafyllidis, Appl. Catal., B 2012, 127, 281ā290. DOI: 10.1016/j.apcatb.2012.08.030
- 71 S. Leng, X. Wang, Q. Cai, F. Ma, Y. Liu, J. Wang, Bioresour. Technol. 2013, 149, 341ā345. DOI: 10.1016/j.biortech.2013.09.096
- 72 J. Shao, R. Yan, H. Chen, H. Yang, D. H. Lee, Fuel Process. Technol. 2010, 91, 1113ā1118. DOI: 10.1016/j.fuproc.2010.03.023
- 73 Q. Lu, W. Xiong, W. Li, Q. Guo, X. Zhu, Bioresour. Technol. 2009, 100, 4871ā4876. DOI: 10.1016/j.biortech.2009.04.068
- 74 Y. Yu, J. Yu, B. Sun, Z. Yan, J. Anal. Appl. Pyrolysis 2014, 106, 86ā91. DOI: 10.1016/j.jaap.2014.01.003
- 75 X. Wei, Z. Wang, Y. Wu, Z. Yu, J. Jin, K. Wu, J. Anal. Appl. Pyrolysis 2014, 107, 150ā154. DOI: 10.1016/j.jaap.2014.02.015
- 76 L. Zhou, H. Yang, H. Wu, M. Wang, D. Cheng, Fuel Process. Technol. 2013, 106, 385ā391. DOI: 10.1016/j.fuproc.2012.09.003
- 77 Y. Huang, W. Kuan, C. Chang, Y. Tzou, Bioresour. Technol. 2013, 131, 274ā280. DOI: 10.1016/j.biortech.2012.12.177
- 78 W. Kuan, Y. Huang, C. Chang, S. Lo, Bioresour. Technol. 2013, 146, 324ā329. DOI: 10.1016/j.biortech.2013.07.079
- 79 Z. Gokdai, A. Sinag, T. Yumak, Biomass Bioenergy 2010, 34, 402ā410. DOI: 10.1016/j.biombioe.2009.12.003
- 80 D. Fabbri, C. Torria, I. Mancini, Green Chem. 2007, 9, 1374ā1379. DOI: 10.1039/b707943e
- 81 D. Fabbri, C. Torri, V. Baravelli, J. Anal. Appl. Pyrolysis 2007, 80, 24ā29. DOI: 10.1016/j.jaap.2006.12.025
- 82 J. Wildschut, F. H. Mahfud, R. H. Venderbosch, H. J. Heeres, Ind. Eng. Chem. Res. 2009, 48, 10324ā10334. DOI: 10.1021/ie9006003
- 83 J. Wildschut, I. Melian-Cabrera, H. J. Heeres, Appl. Catal., B 2010, 99, 298ā306. DOI: 10.1016/j.apcatb.2010.06.036
- 84 S. Zhang, Y. Yan, Z. Ren, T. Li, Energy Sources 2003, 25, 57ā65. DOI: 10.1080/00908310290142118
- 85 D. C. Elliott, T. R. Hart, G. G. Neuenschwander, L. J. Rotness, A. H. Zacher, Environ. Prog. Sustainable Energy 2009, 28, 441ā449. DOI: 10.1002/ep.10384
- 86 P. Kaewpengkrow, D. Atong, V. Sricharoenchaikul, Renewable Energy 2014, 65, 92ā101. DOI: 10.1016/j.renene.2013.07.026
- 87 S. Wan, T. Pham, S. Zhang, L. Lobban, D. Resasco, R. Mallinson, AIChE J. 2013, 59, 2275ā2285. DOI: 10.1002/aic.14038
- 88 E. Kantarelis, W. Yang, W. Blasiak, Energy Fuels 2014, 28, 591ā599. DOI: 10.1021/ef401939g
- 89 Y. Richardson, J. Motuzas, A. Julbe, G. Volle, J. Blin, J. Phys. Chem. C 2013, 117, 23812ā23831. DOI: 10.1021/jp408191p
- 90 Y. Yu, Y. Zeng, J. Zuo, F. Ma, X. Yang, X. Zhang, Y. Wang, Bioresour. Technol. 2013, 134, 198ā203. DOI: 10.1016/j.biortech.2013.01.167
- 91 J. W. Kim, S. H. Park, J. Jung, J.-K. Jeon, C. H. Ko, K.-E. Jeong, Y.-K. Park, Bioresour. Technol. 2013, 136, 431ā436. DOI: 10.1016/j.biortech.2013.03.062
- 92 Z. Du, X. Ma, Y. Li, P. Chen, Y. Liu, X. Lin, H. Lei, R. Ruan, Bioresour. Technol. 2013, 139, 397ā401. DOI: 10.1016/j.biortech.2013.04.053
- 93 H. W. Lee, S. J. Choi, S. H. Park, J.-K. Jeon, S.-C. Jung, S. H. Joo, Y.-K. Park, Energy. 2014, 66, 2ā6. DOI: 10.1016/j.energy.2013.05.023
- 94 O. D. Mante, F. A. Agblevor, S. T. Oyama, R. McClung, Fuel 2014, 117, 649ā659. DOI: 10.1016/j.fuel.2013.09.034
- 95 V. Paasikallio, F. Agblevor, A. Oasmaa, J. Lehto, J. Lehtonen, Energy Fuels 2013, 27, 7587ā7601. DOI: 10.1021/ef401947f
- 96 Y. Cheng, J. Jae, J. Shi, W. Fan, G. W. Huber, Angew. Chem., Int. Ed. 2012, 51, 1387ā1390. DOI: 10.1002/anie.201107390
- 97 Y. Cheng, Z. Wang, C. J. Gilbert, W. Fan, G. W. Huber, Angew. Chem., Int. Ed. 2012, 51, 11097ā11100. DOI: 10.1002/anie.201205230
- 98 H. Zhao, Y. Cao, K. Zhang, W. Orndorff, J. Chen, W. Pan, J. Therm. Anal. Calorim. 2013, 113, 511ā517. DOI: 10.1007/s10973-013-3080-9
- 99 J. Jae, R. Coolman, T. J. Mountziaris, G. W. Huber, Chem. Eng. Sci. 2014, 108, 33ā46. DOI: 10.1016/j.ces.2013.12.023
- 100 J. Li, X. Li, G. Zhou, W. Wang, C. Wang, S. Komarneni, Y. Wang, Appl. Catal., A 2014, 470, 115ā122. DOI: 10.1016/j.apcata.2013.10.040
- 101 K. Wang, K. H. Kim, R. C. Brown, Green Chem. 2014, 16, 727ā735.
- 102 S. Vichaphund, D. Aht-ong, V. Sricharoenchaikul, D. Atong, Renewable Energy 2014, 65, 70ā77.
- 103 M. S. Abu Bakar, J. O. Titiloye, J. Anal. Appl. Pyrolysis 2013, 103, 362ā368. DOI: 10.1016/j.jaap.201.09.005
- 104 C. A. Mullen, A. A. Boateng, Ind. Eng. Chem. Res. 2013, 52, 17156ā17161. DOI: 10.1021/ie4030209
- 105 H. Zhang, R. Xiao, B. Jin, G. Xiao, R. Chen, Bioresour. Technol. 2013, 140, 256ā262. DOI: 10.1016/j.biortech.2013.04.094
- 106 F. Yu, L. Gao, W. Wang, G. Zhang, J. Ji, J. Anal. Appl. Pyrolysis 2013, 104, 325ā329. DOI: 10.1016/j.jaap.2013.06.017
- 107 M. Jeon, J. Jeon, D. J. Suh, S. H. Park, Y. J. Sa, S. H. Joo, Y.-K. Park, Catal. Today 2013, 204, 170ā178. DOI: 10.1016/j.cattod.2012.07.039
- 108 G. T. Neumann, J. C. Hicks, ACS Catal. 2012, 2, 642ā646. DOI: 10.1021/cs200648q
- 109 F. Melligan, M. H. B. Hayes, W. Kwapinski, J. J. Leahy, Energy Fuels 2012, 26, 6080ā6090. DOI: 10.1021/ef301244h
- 110 S. Thangalazhy-Gopakumar, S. Adhikari, R. B. Gupta, Energy Fuels 2012, 26, 5300ā5306. DOI: 10.1021/ef3008213
- 111 V. Srinivasan, S. Adhikari, S. A. Chattanathan, S. Park, Energy Fuels 2012, 26, 7347ā7353. DOI: 10.1021/ef301469t
- 112 P. McKendry, Bioresour. Technol. 2002, 83, 37ā46. DOI: 10.1016/S0960-8524(01) 00118-3
- 113 K. Raveendran, A. Ganesh, K. C. Khilar, Fuel 1996, 75, 987ā998. DOI: 10.1016/0016-2361(96)00030-0
- 114 H. Yang, R. Yan, H. Chen, C. Zheng, D. Lee, Energy Fuels 2006, 20, 388ā393. DOI: 10.1021/ef0580117
- 115 N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon, J. Anal. Appl. Pyrolysis 2007, 78, 265ā271. DOI: 10.1016/j.jaap.2006.08.002
- 116 G. Wang, W. Li, B. Li, H. Chen, Fuel 2008, 87, 552ā558. DOI: 10.1016/j.fuel.2007.02.032
- 117 S. Wang, X. Guo, K. Wang, Z. Luo, J. Anal. Appl. Pyrolysis 2011, 91, 183ā189. DOI: 10.1016/j.jaap.2011.02.006
- 118 D. Fabbri, C. Torri, V. Baravelli, J. Anal. Appl. Pyrolysis 2007, 80, 24ā29. DOI: 10.1016/j.jaap.2006.12.025
- 119 T. R. Carlson, G. Tompsett, W. Conner, G. Huber, Top. Catal. 2009, 52, 241ā252. DOI: 10.1007/s11244-008-9160-6
- 120 T. R. Carlson, J. Jae, Y.-C. Lin, G. A. Tompsett, G. W. Huber, J. Catal. 2010, 270, 110ā124. DOI: 10.1016/j.jcat.2009.12.013
- 121 T. R. Carlson, Y.-T. Cheng, J. Jae, G. W. Huber, Energy Environ. Sci. 2011, 4, 145ā161. DOI: 10.1039/c0ee00341g
- 122 J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbach, R. F. Lobo, G. W. Huber, J. Catal. 2011, 279, 257ā268. DOI: 10.1016/j.jcat.2011.01.019
- 123 X. Li, H. Zhang, J. Li, L. Su, J. Zuo, S. Komarneni, Y. Wang, Appl. Catal., A 2013, 455, 114ā121. DOI: 10.1016/j.apcata.2013.01.038
- 124 T. R. Carlson, T. P. Vispute, G. W. Huber, ChemSusChem 2008, 1, 397ā400. DOI: 10.1002/cssc.200800018
- 125 T. R. Carlson, J. Jae, G. W. Huber, ChemCatChem 2009, 1, 107ā110. DOI: 10.1002/cctc.200900130
- 126 P. U. Karanjkar, R. J. Coolman, G. W. Huber, M. T. Blatnik, S. Almalkie, S. M. de Bruyn Kops, T. J. Mountziaris, W. C. Conner, AIChE J. 2014, 60, 1320ā1335. DOI: 10.1002/aic.14376
- 127 A. Zheng, Z. Zhao, S. Chang, Z. Huang, H. Wu, X. Wang, F. He, H. Li, J. Mol. Catal. A: Chem. 2014, 383ā384, 23ā30. DOI: 10.1016/j.molcata.2013.11.005
- 128 A. Solak, P. Rutkowski, Waste Manage. 2014, 34, 504ā512. DOI: 10.1016/j.wasman.2013.10.036
- 129 V. Srinivasan, S. Adhikari, S. A. Chattanathan, M. Tu, S. Park, BioEnergy Res. 2014, 7, 867ā875. DOI: 10.1007/s12155-014-9426-8
- 130
H. Xia, X. Wang, R. Xu, P. Wu, Y. Wu, L. Yang, S. Zuo, Chem. Ind. For. Prod. 2013, 33 (6), 29ā36. DOI: 10.3969/j.issn.0253-2417.2013.06.006
10.3969/j.issn.0253ā2417.2013.06.006 Google Scholar
- 131 Y.-K. Park, B. R. Jun, S. H. Park, J.-K. Jeon, S. H. Lee, S.-S. Kim, K.-E. Jeong, J. Nanosci. Nanotechnol. 2014, 14, 5120ā5124. DOI: 10.1166/jnn.2014.8406
- 132 X. Li, J. Li, G. Zhou, Y. Feng, Y. Wang, G. Yu, S. Deng, J. Huang, B. Wang, Appl. Catal., A 2014, 481, 173ā182. DOI: 10.1016/j.apcata.2014.05.015
- 133 P. R. Patwardhan, R. C. Brown, B. H. Shanks, ChemSusChem 2011, 4, 636ā643. DOI: 10.1002/cssc.201000425
- 134 X. Guo, S. Wang, Y. Zhou, Z. Luo, in Proc. of the 6th IASME/WSEAS Int. Conf. on Energy & Environment, World Scientific and Engineering Academy and Society, Athens 2011, 137ā142.
- 135 D. J. Mihalcik, C. A. Mullen, A. A. Boateng, J. Anal. Appl. Pyrolysis 2011, 92, 224ā232. DOI: 10.1016/j.jaap.2011.06.001
- 136 Y. Peng, S. Wu, Cellul. Chem. Technol. 2011, 45, 605ā612.
- 137 H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Fuel 2007, 86, 1781ā1788. DOI: 10.1016/j.fuel.2006.12.013
- 138 S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen, T. Fransson, Biotechnol. Adv. 2009, 27, 562ā567. DOI: 10.1016/j.biotechadv.2009.04.010
- 139 D. D. Laskar, B. Yang, H. Wang, J. Lee, Biofuels, Bioprod. Biorefin. 2013, 7, 602ā626. DOI: 10.1002/bbb.1422
- 140 P. R. Patwardhan, R. C. Brown, B. H. Shanks, ChemSusChem 2011, 4, 1629ā1636. DOI: 10.1002/cssc.201100133
- 141 R. K. Sharma, N. N. Bakhshi, Energy Fuels 1993, 7, 306ā314. DOI: 10.1021/ef00038a022
- 142 M. A. Jackson, D. L. Compton, A. A. Boateng, J. Anal. Appl. Pyrolysis 2009, 85, 226ā230. DOI: 10.1016/j.jaap.2008.09.016
- 143 Z. Ma, E. Troussard, J. A. van Bokhoven, Appl. Catal., A 2012, 423ā424, 130ā136. DOI: 10.1016/j.apcata.2012.02.027
- 144 C. A. Mullen, A. A. Boateng, Fuel Process. Technol. 2010, 91, 1446ā1458. DOI: 10.1016/j.fuproc.2010.05.022
- 145 X. Li, L. Su, Y. Wang, Y. Yu, C. Wang, X. Li, Z. Wang, Front. Environ. Sci. Eng. 2012, 6, 295ā303. DOI: 10.1007/s11783-012-0410-2
- 146 F. A. Agblevor, S. Beis, O. Mante, N. Abdoulmoumine, Ind. Eng. Chem. Res. 2010, 49, 3533ā3538. DOI: 10.1021/ie901629r
- 147 H. S. Choia, D. Meier, Bioresour. Technol. 2013, 131, 274ā280. DOI: 10.1016/j.biortech.2012.12.177
- 148 H. Ben, A. J. Ragauskas, ACS Sustainable Chem. Eng. 2013, 1, 316ā324. DOI: 10.1021/sc300074n
- 149 S. Adhikari, V. Srinivasan, O. Fasina, Energy Fuels 2014, 28, 4532. DOI: 10.1021/ef500902x
- 150 B. K. Yathavan, F. A. Agblevor, Energy Fuels 2013, 27, 6858ā6865. DOI: 10.1021/ef401853a
- 151 N. Y. Chen, T. F. Degnan, L. R. Koenig, CHEMTECH 1986, 16, 506ā511.
- 152 S. Stefanidis, K. Kalogiannis, E. F. Iliopoulou, A. A. Lappas, J. M. Triguero, M. T. Navarro, A. Chica, F. Rey, Green Chem. 2013, 15, 1647ā1658. DOI: 10.1039/c3gc40161h
- 153 Q. Lu, Z. Zhang, X. Yang, C. Dong, X. Zhu, J. Anal. Appl. Pyrolysis 2013, 104, 139ā145. DOI: 10.1016/j.jaap.2013.08.011
- 154 S. R. Naqvi, Y. Uemura, S. B. Yusup, J. Anal. Appl. Pyrolysis 2014, 106, 57ā62. DOI: 10.1016/j.jaap.2013.12.009
- 155 Z. Hussain, K. M. Khan, A. Khan, S. Ullah, A. Karim, S. Perveen, J. Anal. Appl. Pyrolysis 2013, 101, 90ā95. DOI: 10.1016/j.jaap.2013.02.007
- 156 S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, RSC Adv. 2014, 4, 10731ā10737. DOI: 10.1039/c4ra00122b
- 157 K. P. Shadangi, K. Mohanty, Fuel 2014, 126, 109ā115. DOI: 10.1016/j.fuel.2014.02.035
- 158 T. S. Nguyen, M. Zabeti, L. Lefferts, G. Brem, K. Seshan, Bioresour. Technol. 2013, 142, 353ā360. DOI: 10.1016/j.biortech.2013.05.023
- 159 T. Mochizuki, D. Atong, S. Chen, M. Toba, Y. Yoshimura, Catal. Commun. 2013, 36, 1ā4. DOI: 10.1016/j.catcom.2013.02.018
- 160 Q. Bu, H. Lei, L. Wang, Y. Wei, L. Zhu, Y. Liu, J. Liang, J. Tang, Bioresour. Technol. 2013, 142, 546ā552. DOI: 10.1016/j.biortech.2013.05.073
- 161 Y. Shen, P. Zhao, Q. Shao, Microporous Mesoporous Mater. 2014, 188, 46ā76. DOI: 10.1016/j.micromeso.2014.01.005
- 162 P. L. Spath, D. C. Dayton, Preliminary ScreeningāTechnical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas, Technical Report NREL/TP-510-34929, National Renewable Energy Laboratory, Golden, CO 2003.
- 163 T. Damartzis, A. Zabaniotou, Renewable Sustainable Energy Rev. 2011, 15, 366ā378. DOI: 10.1016/j.rser.2010.08.003
- 164 A. F. Kirkels, G. P. J. Verbong, Renewable Sustainable Energy Rev. 2011, 15, 471ā481. DOI: 10.1016/j.rser.2010.09.046
- 165 Y.-C. Lin, G. W. Huber, Energy Environ. Sci. 2009, 2, 68ā80. DOI: 10.1039/b814955k
- 166 C. N. Hamelinck, A. P. C. Faaij, J. Power Sources 2002, 111, 1ā22. DOI: 10.1016/S0378-7753(02)00220-3
- 167 J. Udomsirichakorn, P. A. Salam, Renewable Sustainable Energy Rev. 2014, 30, 565ā579. DOI: 10.1016/j.rser.2013.10.013
- 168 M. A. Caballero, J. Corella, M. P. Aznar, J. Gil, Ind. Eng. Chem. Res. 2000, 39, 1143ā1154. DOI: 10.1021/ie990738t
- 169 F. Miccio, O. Moersch, H. Spliethoff, K. R. G. Hein, Fuel 1999, 78, 1473ā1481. DOI: 10.1016/S0016-2361(99)00044-7
- 170 C. Brage, Q. Yu, G. Chen, K. Sjostrom, Biomass Bioenergy 2000, 18, 87ā91. DOI: 10.1016/S0961-9534(99)00069-0
- 171 D. J. Stevens, Hot Gas Conditioning: Recent Progress With Larger-Scale Biomass Gasification SystemsāUpdate and Summary of Recent Progress, Subcontractor Report NREL/SR-510-29952, National Renewable Energy Laboratory, Golden, CO 2001.
- 172 F. Engstrom, Biomass Bioenergy 1998, 15, 259ā262. DOI: 10.1016/S0961-9534(98)00020-8
- 173 D. N. Bangala, N. Abatzoglou, J.-P. Martin, E. Chornet, Ind. Eng. Chem. Res. 1997, 36, 4184ā4192. DOI: 10.1021/ie960785a
- 174 A. Olivares, M. P. Aznar, M. A. Caballero, J. Gil, E. Frances, J. Corella, Ind. Eng. Chem. Res. 1997, 36, 5220ā5226. DOI: 10.1021/ie9703797
- 175 I. Ahmad, A. K. Gupta, Appl. Energy 2010, 87, 101ā108. DOI: 10.1016/j.apenergy.2009.08.032
- 176 Y. Richardson, J. Blin, A. Julbe, Prog. Energy Comb. Sci. 2012, 38, 765ā781. DOI: 10.1016/j.pecs.2011.12.001
- 177 D. C. Elliott, R. T. Hallen, J. Sealock Jr., J. Anal. Appl. Pyrolysis 1984, 6, 299ā316. DOI: 10.1016/0165-2370(84)80024-8
- 178 O. Senneca, Fuel Process. Technol. 2007, 88, 87ā97. DOI: 10.1016/j.fuproc.2006.09.002
- 179 D. Vamvuka, E. Karouki, S. Sfakiotaki, Fuel 2011, 90, 1120ā1127. DOI: 10.1016/j.fuel.2010.12.001
- 180 D. Vamvuka, E. Karouki, S. Sfakiotaki, P. Salatino, Combust. Sci. Technol. 2012, 184 (1), 64ā77. DOI: 10.1080/00102202.2011.618152
- 181 H. Schmieder, J. Abeln, N. Boukis, E. Dinjus, A. Kruse, M. Kluth, G. Petrich, E. Sadri, M. Schacht, J. Supercrit. Fluid. 2000, 17, 145ā153. DOI: 10.1016/S0896-8446(99)00051-0
- 182 A. Kruse, D. Meier, P. Rimbrecht, M. Schacht, Ind. Eng. Chem. Res. 2000, 39, 4842ā4848. DOI: 10.1021/ie0001570
- 183 T. Minowa, F. Zhen, T. Ogi, J. Supercrit. Fluid. 1998, 13, 253ā259. DOI: 10.1016/S0896-8446(98)00059-X
- 184 Y. Zhang, X. Gong, B. Zhang, W. Liu, M. Xu, Int. J. Hydrogen Energy 2014, 39, 4234ā4243. DOI: 10.1016/j.ijhydene.2014.01.015
- 185 G. Hu, S. P. Xu, S. G. Li, C. G. Xiao, S. Q. Liu, Fuel Process. Technol. 2006, 87, 375ā382. DOI: 10.1016/j.fuproc.2005.07.008
- 186 K. S. Seshadri, A. Shamsi, Ind. Eng. Chem. Res. 1998, 37, 3830ā3837. DOI: 10.1021/ie980190a
- 187 S. T. Chaudhari, A. K. Dalai, N. N. Bakhshi, Energy Fuels 2003, 17, 1062ā1067. DOI: 10.1021/ef030017d
- 188 K. Gallucci, S. Stendardo, P. U. Foscolo, Int. J. Hydrogen Energy 2008, 33, 3049ā3055. DOI: 10.1016/j.ijhydene.2008.03.039
- 189 M. R. Mahishi, D. Y. Goswami, Int. J. Hydrogen Energy 2007, 32, 2803ā2808. DOI: 10.1016/j.ijhydene.2007.03.030
- 190 L. Wei, S. P. Xu, L. Zhang, C. H. Liu, H. Zhu, S. Q. Liu, Int. J. Hydrogen Energy 2007, 32, 24ā31. DOI: 10.1016/j.ijhydene.2006.06.002
- 191 C. Berrueco, D. MontanĆ©, B. Matas Güell, G. del Alamo, Energy 2014, 66, 849ā859. DOI: 10.1016/j.energy.2013.12.035
- 192 M. Asadullah, K. Tomishige, K. Fujimoto, Catal. Commun. 2001, 2, 63ā68. DOI: 10.1016/S1566-7367(01)00011-5
- 193 M. Asadullah, S. Ito, K. Kunimori, K. Tomishige, Ind. Eng. Chem. Res. 2002, 41, 4567ā4575. DOI: 10.1021/ie020112u
- 194 M. Asadullah, S. Ito, K. Kunimori, M. Yamada, K. Tomishige, J. Catal. 2002, 208, 255ā259. DOI: 10.1006/jcat.2002.3575
- 195 M. Asadullah, S. Ito, K. Kunimori, M. Yamada, K. Tomishige, Environ. Sci. Technol. 2002, 36, 4476ā4481. DOI: 10.1021/es020575r
- 196 M. Asadullah, T. Miyazawa, S. Ito, K. Kunimori, M. Yamada, K. Tomishige, Appl. Catal., A 2003, 255, 169ā180. DOI: 10.1016/S0926-860X(03)00539-8
- 197 M. Asadullah, T. Miyazawa, S. Ito, K. Kunimori, M. Yamada, K. Tomishige, Green Chem. 2002, 4, 385ā389. DOI: 10.1039/B204536M
- 198 M. Asadullah, T. Miyazawa, S. Ito, K. Kunimori, K. Tomishige, Appl. Catal., A 2003, 246, 103ā116. DOI: 10.1016/S0926-860X(03)00047-4
- 199 K. Tomishige, M. Asadullah, K. Kunimori, Catal. Surv. Asia 2003, 7, 219ā233. DOI: 10.1023/B:CATS.0000008162.69178.17
- 200 K. C. Park, H. Tomiyasu, Chem. Commun. 2003, 6, 694ā695. DOI: 10.1039/B211800A
- 201 Y. Izumizaki, K. C. Park, Y. Tachibana, H. Tomiyasu, Y. Fujii, Prog. Nucl. Energy 2005, 47, 544ā552. DOI: 10.1016/j.pnucene.2005.05.057
- 202 J. A. Onwudili, P. T. Williams, Appl. Catal., B 2013, 132ā133, 70ā79. DOI: 10.1016/j.apcatb.2012.11.033
- 203 M. Osada, T. Sato, M. Watanabe, T. Adschiri, K. Arai, Energy Fuels 2004, 18, 327ā333. DOI: 10.1021/ef034026y
- 204 Y. Usui, T. Minowa, S. Inoue, T. Ogi, Chem. Lett. 2000, 10, 1166ā1167. DOI: 10.1246/cl.2000.1166
- 205 F. L. P. Resende, P. E. Savage, Ind. Eng. Chem. Res. 2010, 49, 2694ā2700. DOI: 10.1021/ie901928f
- 206 A. G. Chakinala, D. W. F. Brilman, W. P. M. van Swaaij, S. R. A. Kersten, Ind. Eng. Chem. Res. 2010, 49, 1113ā1122. DOI: 10.1021/ie9008293
- 207 G. J. DiLeo, P. E. Savage, J. Supercrit. Fluids 2006, 39, 228ā232. DOI: 10.1016/j.supflu.2006.01.004
- 208 A. Sinag, T. Yumak, V. Balci, A. Kruse, J. Supercrit. Fluids 2011, 56, 179ā185. DOI: 10.1016/j.supflu.2011.01.002
- 209 J. T. Gallagher, H. Harker, Carbon 1964, 2, 163ā173. DOI: 10.1016/0008-6223(64)90057-0
- 210 J. L. Figueiredo, J. Rivera-Utrilla, M. A. Ferro-Garcia, Carbon 1987, 25, 703ā708. DOI: 10.1016/0008-6223(87)90226-0
- 211 W. Liu, H. Jiang, X. Zhang, H. Ding, H. Yu, Environ. Sci. Technol. 2012, 46, 7849ā7856. DOI: 10.1021/es204681y
- 212 F. L. P. Resende, P. E. Savage, Ind. Eng. Chem. Res. 2010, 49, 2694ā2700. DOI: 10.1021/ie901928f
- 213 M. Watanabe, H. Inomata, K. Arai, Biomass Bioenergy 2002, 22, 405ā410. DOI: 10.1016/S0961-9534(02)00017-X
- 214 L. Wang, D. Li, H. Watanabe, M. Tamura, Y. Nakagawa, K. Tomishige, Appl. Catal., B 2014, 150ā151, 82ā92. DOI: 10.1016/j.apcatb.2013.12.002
- 215 H. O. A. Fredriksson, R. J. Lancee, P. C. Thüne, H. J. Veringa, J. W. (Hans) Niemantsverdriet, Appl. Catal., B 2013, 130ā131, 168ā177. DOI: 10.1016/j.apcatb.2012.10.017
- 216 C. H. Bartholomew, B. Delmon, G. F. Froment, in Catalyst Deaktivation 1987, Studies in Surface Science and Catalysis Series, Elsevier, Amsterdam 1987, 81ā104.
- 217 S. L. Lakhapatri, M. A. Abraham, Appl. Catal., A 2009, 364, 113ā121. DOI: 10.1016/j.apcata.2009.05.035
- 218 T. Minowa, S. Inoue, Renewable Energy 1999, 16, 1114ā1117. DOI: 10.1016/S0960-1481(98)00436-4
- 219 C. Wu, Z. Wang, L. Wang, J. Huang, P. T. Williams, Waste Biomass Valorization 2014, 5, 175ā180. DOI: 10.1007/s12649-013-9244-9
- 220 Q. Xie, Fernanda C. Borges, Y. Cheng, Y. Wan, Y. Li, X. Lin, Y. Liu, F. Hussain, P. Chen, R. Ruan, Bioresour. Technol. 2014, 156, 291ā296. DOI: 10.1016/j.biortech.2014.01.057
- 221 V. Skoulou, A. Zabaniotou, Catal. Today 2012, 196, 56ā66. DOI: 10.1016/j.cattod.2012.03.035
- 222 A. J. Byrd, S. Kumar, L. Kong, H. Ramsurn, R. B. Gupta, Int. J. Hydrogen Energy 2011, 36, 3426ā3433. DOI: 10.1016/j.ijhydene.2010.12.026
- 223 Y. Richardson, J. Motuzas, A. Julbe, G. Volle, J. Blin, J. Phys. Chem. C 2013, 117, 23812ā23831. DOI: 10.1021/jp408191p
- 224 C. Wu, Z. Wang, V. Dupont, J. Huang, P. T. Williams, J. Anal. Appl. Pyrolysis 2013, 99, 143ā148. DOI: 10.1016/j.jaap.2012.10.010
- 225 S. Cheah, K. R. Gaston, Y. O. Parent, M. W. Jarvis, T. B. Vinzant, K. M. Smith, N. E. Thornburg, M. R. Nimlos, K. A. Magrini-Bair, Appl. Catal., B 2013, 134ā135, 34ā45. DOI: 10.1016/j.apcatb.2012.12.022
- 226 M. A. Nahil, X. Wang, C. Wu, H. Yang, H. Chen, P. T. Williams, RSC Adv. 2013, 3, 5583ā5590. DOI: 10.1039/C3RA40576A
- 227 A. M. Rupperta, M. Niewiadomskia, J. Gramsa, W. KwapiÅski, Appl. Catal., B 2014, 145, 85ā90. DOI: 10.1016/j.apcatb.2013.01.010
- 228 N. Ding, R. Azargohar, A. K. Dalai, J. A. Kozinski, Fuel 2014, 118, 416ā425. DOI: 10.1016/j.fuel.2013.11.021
- 229 Q. Guan, T. Mao, Q. Zhang, R. Miao, P. Ning, J. Gu, S. Tian, Q. Chen, X. Chai, J. Supercritic. Fluid. 2014, 95, 413ā421. DOI: 10.1016/j.supflu.2014.10.015
- 230 C. Wu, Z. Wang, J. Huang, P. T. Williams, Fuel 2013, 106, 697ā706. DOI: 10.1016/j.fuel.2012.10.064
- 231 X. Xiao, J. Cao, X. Meng, D. D. Le, L. Li, Y. Ogawa, K. Sato, T. Takarada, Fuel 2013, 103, 135ā140. DOI: 10.1016/j.fuel.2011.06.077
- 232 J. Wang, G. Cheng, Y. You, B. Xiao, S. Liu, P. He, D. Guo, X. Guo, G. Zhang, Int. J. Hydrogen Energy 2012, 37, 6503ā6510. DOI: 10.1016/j.ijhydene.2012.01.070
- 233 X. D. Xu, Y. Matsumura, J. Stenberg, M. J. Antal, Ind. Eng. Chem. Res. 1996, 35, 2522ā2530. DOI: 10.1021/ie950672b
- 234 R. B. King, A. D. King, Rus. Chem. Bull. 1994, 43, 1445ā1450. DOI: 10.1007/BF00697123
- 235 A. Erkiaga, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Fuel Process. Technol. 2013, 116, 292ā299. DOI: 10.1016/j.fuproc.2013.07.008