Biotechnological Production of Astaxanthin through Metabolic Engineering of Yeasts
Lidan Ye
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China.
Search for more papers by this authorWenping Xie
Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China.
Search for more papers by this authorPingping Zhou
Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China.
Search for more papers by this authorCorresponding Author
Hongwei Yu
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.Search for more papers by this authorLidan Ye
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China.
Search for more papers by this authorWenping Xie
Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China.
Search for more papers by this authorPingping Zhou
Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China.
Search for more papers by this authorCorresponding Author
Hongwei Yu
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.Search for more papers by this authorAbstract
Astaxanthin is a highly valued carotenoid with growing market in aquaculture, food, cosmetic and pharmaceutical industries. The market demand for bio-derived astaxanthin and the insufficient efficiency of astaxanthin biosynthesis drive the advances in metabolic engineering of native astaxanthin producers and heterologous hosts. The recent research progress in engineering of astaxanthin biosynthesis in the red-pigmented heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, the food-grade noncarotenogenic yeast Candida utilis, the oleaginous yeast Yarrowia lipolytica and the chassis organism Saccharomyces cerevisiae is reviewed, the advances in the development of pathway engineering tools are discussed, and future strategies for further improving biotechnological production of astaxanthin in yeasts are proposed.
References
- 1 T. Maoka, T. Etoh, A. Osawa, K. Shindo, J. Oleo. Sci. 2012, 61 (7), 401–406.
- 2 I. Higuera-Ciapara, L. Felix-Valenzuela, F. M. Goycoolea, Crit. Rev. Food Sci. Nutr. 2006, 46 (2), 185–196.
- 3 A. G. Andrewes, M. P. Starr, Phytochemistry 1976, 15 (6), 1009–1011.
- 4 W. I. Golubev, Yeast 1995, 11 (2), 101–110.
- 5 M. Guerin, M. E. Huntley, M. Olaizola, Trends Biotechnol. 2003, 21 (5), 210–216.
- 6 A. R. Dominguez-Bocanegra, T. Ponce-Noyola, J. A. Torres-Munoz, Appl. Microbiol. Biotechnol. 2007, 75 (4), 783–791.
- 7 G. I. Frengova, D. M. Beshkova, J. Ind. Microbiol. Biotechnol. 2009, 36 (2), 163–180.
- 8 M. Rodriguez-Saiz, J. L. de la Fuente, J. L. Barredo, Appl. Microbiol. Biotechnol. 2010, 88 (3), 645–658.
- 9 I. Schmidt, H. Schewe, S. Gassel, C. Jin, J. Buckingham, M. Humbelin, G. Sandmann, J. Schrader, Appl. Microbiol. Biotechnol. 2011, 89 (3), 555–571.
- 10 H. Visser, A. J. van Ooyen, J. C. Verdoes, Fems Yeast Res. 2003, 4 (3), 221–231.
- 11 J. F. Martin, E. Gudina, J. L. Barredo, Microb. Cell Fact. 2008, 7.
- 12 K. Ukibe, K. Hashida, N. Yoshida, H. Takagi, Appl. Environ. Microbiol. 2009, 75 (22), 7205–7211.
- 13 Y. Miura, K. Kondo, T. Saito, H. Shimada, P. D. Fraser, N. Misawa, Appl. Environ. Microbiol. 1998, 64 (4), 1226–1229.
- 14 P. L. Sharpe, W. Y. Rick, Q. Q. Zhu, US Patent 11/952243, 2007.
- 15 R. Bailey, K. T. Madden, J. Trueheart, US Patent 7851199, 2010.
- 16 N. Misawa, H. Shimada, J. Biotechnol. 1997, 59 (3), 169–181.
- 17 A. Das, S.-H. Yoon, S.-H. Lee, J.-Y. Kim, D.-K. Oh, S.-W. Kim, Appl. Microbiol. Biotechnol. 2007, 77 (3), 505–512.
- 18 X. Lv, H. Xu, H. Yu, Appl. Microbiol. Biotechnol. 2013, 97 (6), 2357–2365.
- 19
X. Lv, W. Xie, W. Lu, F. Guo, J. Gu, H. Yu, L. Ye, J. Biotechnol. 2014, in press. DOI: 10.1016/j.jbiotec.2014.1006.1024
10.1016/j.jbiotec.2014.1006.1024 Google Scholar
- 20 R. Verwaal, J. Wang, J. P. Meijnen, H. Visser, G. Sandmann, J. A. van den Berg, A. J. van Ooyen, Appl. Environ. Microbiol. 2007, 73 (13), 4342–4350.
- 21 F. X. Cunningham, E. Gantt, Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 557–583.
- 22 J. Alcaino, S. Barahona, M. Carmona, C. Lozano, A. Marcoleta, M. Niklitschek, D. Sepulveda, M. Baeza, V. Cifuentes, BMC Microbiol. 2008, 8, 169.
- 23 V. Álvarez, M. Rodríguez-Sáiz, J. L. de la Fuente, E. J. Gudiña, R. P. Godio, J. F. Martín, J. L. Barredo, Fungal Genet. Biol. 2006, 43 (4), 261–272.
- 24 M. Niklitschek, J. Alcaino, S. Barahona, D. Sepulveda, C. Lozano, M. Carmona, A. Marcoleta, C. Martinez, P. Lodato, M. Baeza, V. Cifuentes, Biol. Res. 2008, 41 (1), 93–108.
- 25 L. L. Miao, S. A. Chi, Y. C. Tang, Z. Y. Su, T. Yin, G. H. Guan, Y. Li, Fems Yeast Res. 2011, 11 (2), 192–201.
- 26 J. Montanti, N. P. Nghiem, D. B. Johnston, Appl. Biochem. Biotechnol. 2011, 164 (5), 655–665.
- 27 J. L. de la Fuente, M. Rodriguez-Saiz, C. Schleissner, B. Diez, E. Peiro, J. L. Barredo, J. Biotechnol. 2010, 148 (2–3), 144–146.
- 28 C. Tognetti, M. Moline, M. van Broock, D. Libkind, J. Basic Microbiol. 2013, 53 (9), 766–772.
- 29
K. Y. Hara, T. Morita, Y. Endo, M. Mochizuki, M. Araki, A. Kondo, Appl. Microbiol. Biotechnol. 2014, in press. DOI: 10.1007/s00253-00014-05727-00252
10.1007/s00253‐00014‐05727‐00252 Google Scholar
- 30 Z. Shao, H. Zhao, H. Zhao, Nucleic Acids Res. 2009, 37 (2), e16. DOI: 10.1093/nar/gkn991
- 31 G. Contreras, S. Barahona, M. C. Rojas, M. Baeza, V. Cifuentes, J. Alcaino, BMC Biotechnol. 2013, 13, 84.
- 32 P. Calo, T. Demiguel, J. B. Velazquez, T. G. Villa, Biotechnol. Lett. 1995, 17 (6), 575–578.
- 33 J. de la Fuente, E. Peiro, B. Díez, A. Marcos, C. Schleissner, M. Rodríguez-Sáiz, C. Rodríguez-Otero, W. Cabri, J. Barredo, Euopean Patent EP 1479777A1, 2004.
- 34 L. B. Flores-Cotera, R. Martin, S. Sanchez, Appl. Microbiol. Biotechnol. 2001, 55 (3), 341–347.
- 35 P. Lodato, J. Alcaino, S. Barahona, M. Niklitschek, M. Carmona, A. Wozniak, M. Baeza, A. Jimenez, V. Cifuentes, Biol. Res. 2007, 40 (1), 73–84.
- 36 P. Lodato, J. Alcaino, S. Barahona, P. Retamales, A. Jimenez, V. Cifuentes, Biol. Res. 2004, 37 (1), 83–93.
- 37 A. Wozniak, C. Lozano, S. Barahona, M. Niklitschek, A. Marcoleta, J. Alcaíno, D. Sepulveda, M. Baeza, V. Cifuentes, Fems Yeast Res. 2011, 11 (3), 252–262.
- 38 G.-H. An, Biotechnol. Lett. 2001, 23 (12), 1005–1009.
- 39 A. Barbachano-Torres, L. M. Castelblanco-Matiz, A. C. Ramos-Valdivia, C. M. Cerda-García-Rojas, L. M. Salgado, C. M. Flores-Ortiz, T. Ponce-Noyola, Archiv Microbiol. 2014, 196 (6), 411–421.
- 40 J. Breitenbach, H. Visser, J. C. Verdoes, A. J. van Ooyen, G. Sandmann, Biotechnol. Lett. 2011, 33 (4), 755–761.
- 41 N. Ledetzky, A. Osawa, K. Iki, H. Pollmann, S. Gassel, J. Breitenbach, K. Shindo, G. Sandmann, Arch. Biochem. Biophys. 2014, 545, 141–147.
- 42 J. C. Verdoes, G. Sandmann, H. Visser, M. Diaz, M. van Mossel, A. J. van Ooyen, Appl. Environ. Microbiol. 2003, 69 (7), 3728–3738.
- 43 S. Gassel, H. Schewe, I. Schmidt, J. Schrader, G. Sandmann, Biotechnol. Lett. 2013, 35 (4), 565–569.
- 44 S. Gassel, J. Breitenbach, G. Sandmann, Appl. Microbiol. Biotechnol. 2014, 98 (1), 345–350.
- 45
Y. Miura, K. Kondo, H. Shimada, T. Saito, K. Nakamura, N. Misawa, Biotechnol. Bioeng. 1998, 58 (2–3), 306–308.
10.1002/(SICI)1097-0290(19980420)58:2/3<306::AID-BIT29>3.0.CO;2-8 PubMed Web of Science® Google Scholar
- 46 H. Shimada, K. Kondo, P. D. Fraser, Y. Miura, T. Saito, N. Misawa, Appl. Environ. Microbiol. 1998, 64 (7), 2676–2680.
- 47 Y. Jiang, P. Proteau, D. Poulter, S. Ferro-Novick, J. Biol. Chem. 1995, 270 (37), 21793–21799.
- 48 S. Yamano, T. Ishii, M. Nakagawa, H. Ikenaga, N. Misawa, Biosci. Biotechnol. Biochem. 1994, 58 (6), 1112–1114.
- 49 H. M. van den Brink, R. F. van Gorcom, C. A. van den Hondel, P. J. Punt, Fungal Genet. Biol. 1998, 23 (1), 1–17.
- 50 K. Ojima, J. Breitenbach, H. Visser, Y. Setoguchi, K. Tabata, T. Hoshino, J. van den Berg, G. Sandmann, Mol. Genet. Genomics 2006, 275 (2), 148–158.
- 51 W. Xie, M. Liu, X. Lv, W. Lu, J. Gu, H. Yu, Biotechnol. Bioeng. 2014, 111 (1), 125–133.
- 52 M. S. Siddiqui, K. Thodey, I. Trenchard, C. D. Smolke, Fems Yeast Res. 2012, 12 (2), 144–170.
- 53 L. Albertsen, Y. Chen, L. S. Bach, S. Rattleff, J. Maury, S. Brix, J. Nielsen, U. H. Mortensen, Appl. Environ. Microbiol. 2011, 77 (3), 1033–1040.
- 54 C. Ohto, M. Muramatsu, S. Obata, E. Sakuradani, S. Shimizu, Appl. Microbiol. Biotechnol. 2010, 87 (4), 1327–1334.
- 55 Z. Dai, Y. Liu, L. Huang, X. Zhang, Biotechnol. Bioeng. 2012, 109 (11), 2845–2853.
- 56 M. Farhi, E. Marhevka, T. Masci, E. Marcos, Y. Eyal, M. Ovadis, H. Abeliovich, A. Vainstein, Metab. Eng. 2011, 13 (5), 474–481.
- 57 W. Lu, L. Ye, H. Xu, W. Xie, J. Gu, H. Yu, Biotechnol. Bioeng. 2014, 111 (4), 761–769.
- 58 B. A. Blount, T. Weenink, T. Ellis, FEBS Lett. 2012, 586 (15), 2112–2121.
- 59 C. M. Ajo-Franklin, D. A. Drubin, J. A. Eskin, E. P. Gee, D. Landgraf, I. Phillips, P. A. Silver, Genes. Dev. 2007, 21 (18), 2271–2276.
- 60 C. J. Bashor, N. C. Helman, S. Yan, W. A. Lim, Science 2008, 319 (5869), 1539–1543.
- 61 L. Tao, J. Wilczek, J. M. Odom, Q. Cheng, Metab. Eng. 2006, 8 (6), 523–531.
- 62 F. Bouvier, Y. Keller, A. d'Harlingue, B. Camara, Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids 1998, 1391 (3), 320–328.
- 63 L. Tian, D. DellaPenna, Archiv. Biochem. Biophys. 2004, 430 (1), 22–29.
- 64 T.-H. Chang, R.-T. Guo, T.-P. Ko, A. H.-J. Wang, P.-H. Liang, J. Biol. Chem. 2006, 281 (21), 14991–15000.
- 65 A. R. Moise, S. Al-Babili, E. T. Wurtzel, Chem. Rev. 2013, 114 (1), 164–193.
- 66 J. L. Gu, M. Liu, F. Guo, W. P. Xie, W. Q. Lu, L. D. Ye, Z. R. Chen, S. F. Yuan, H. W. Yu, Enzyme Microb. Technol. 2014, 55, 121–127.
- 67 F. Guo, S. Franzen, L. Ye, J. Gu, H. Yu, Biotechnol. Bioeng. 2014, 111 (9), 1729–1739. DOI: 10.1002/bit.25249