Formamide Chemistry and the Origin of Informational Polymers
Raffaele Saladino
Dipartimento A. B. A. C., Università della Tuscia, Via San Camillo De Lellis, I-01100 Viterbo
Search for more papers by this authorClaudia Crestini
Dipartimento di Scienze e Tecnologie Chimiche, Università ‘Tor Vergata', I-00133 Rome
Search for more papers by this authorFabiana Ciciriello
Dipartimento di Genetica e Biologia Molecolare, University ‘La Sapienza', P.le Aldo Moro, 5, I-00185 Rome
Search for more papers by this authorGiovanna Costanzo
Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, I-00185 Rome
Search for more papers by this authorErnesto Di Mauro
Fondazione ‘Istituto Pasteur-Fondazione Cenci-Bolognetti', c/o Dipartimento di Genetica e Biologia Molecolare, Università ‘La Sapienza', P.le Aldo Moro, 5, I-00185 Rome, (phone: +39 06 49912880; fax: +39 06 49912500)
Search for more papers by this authorRaffaele Saladino
Dipartimento A. B. A. C., Università della Tuscia, Via San Camillo De Lellis, I-01100 Viterbo
Search for more papers by this authorClaudia Crestini
Dipartimento di Scienze e Tecnologie Chimiche, Università ‘Tor Vergata', I-00133 Rome
Search for more papers by this authorFabiana Ciciriello
Dipartimento di Genetica e Biologia Molecolare, University ‘La Sapienza', P.le Aldo Moro, 5, I-00185 Rome
Search for more papers by this authorGiovanna Costanzo
Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, I-00185 Rome
Search for more papers by this authorErnesto Di Mauro
Fondazione ‘Istituto Pasteur-Fondazione Cenci-Bolognetti', c/o Dipartimento di Genetica e Biologia Molecolare, Università ‘La Sapienza', P.le Aldo Moro, 5, I-00185 Rome, (phone: +39 06 49912880; fax: +39 06 49912500)
Search for more papers by this authorAbstract
Formamide (HCONH2) provides a chemical frame potentially affording all the monomeric components necessary for the formation of nucleic polymers. In the presence of the appropriate catalysts, and by moderate heating, formamide yields a complete set of nucleic bases, acyclonucleosides, and favors both phosphorylations and transphosphorylations. Physico-chemical conditions exist in which formamide favors the stability of the phosphoester bonds in nucleic polymers more than that of the same bonds in monomers. This property establishes ‘thermodynamic niches’ in which the polymeric forms are favored. The hypothesis that these specific attributes of formamide allowed the onset of prebiotic chemical equilibria capable of Darwinian evolution is discussed.
References
- 1 M. Levy, S. C. Miller, Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 7933.
- 2 J. L. Bada, A. Lazcano, Science 2002, 296, 1982.
- 3 S. L. Miller, A. Lazcano, J. Mol. Evol. 1995, 41, 689.
- 4 M. Levy, S. L. Miller, K. Brinton, J. L. Bada, Icarus 2000, 145, 609.
- 5 S. Miyakawa, H. J. Cleaves, S. L. Miller, Origins Life Evol. Biosphere 2002, 32, 195.
- 6 S. Miyakawa, H. J. Cleaves, S. L. Miller, Origins Life Evol. Biosphere 2002, 32, 209.
- 7 F. Westall, ‘Astrobiology: Future Perspectives’, Kluwer/Springer, Dordrecht, 2004, Chapt. 12, p. 287.
- 8 L. P. Knauth, D. R. Lowe, Geol. Soc. Am. Bull. 2003, 115, 566.
- 9 D. R. Lowe, G. R. Byerly, F. T. Kyte, A. Shukulyukov, F. Asaro, A. Krull, Astrobiology 2003, 3, 7.
- 10 F. T. Kyte, A. Shukolyukov, G. W. Lugmaor, D. R. Lowe, G. R. Byerly, Geology 2003, 31, 283.
- 11 N. T. Arndt, in ‘Archean Crustal Evolution’, Ed. K. C. Condie, Elsevier, Amsterdam, 1994, p. 11.
- 12 T. J. Millar, ‘Astrobiology: Future Perspectives’, Kluwer/Springer, Dordrecht, 2004, Chapt. 2, p. 17, and refs. cit. therein.
- 13 A. J. Markwick, S. B. Charnley, ‘Astrobiology: Future Perspectives’, Kluwer/Springer, Dordrecht, 2004, Chapt. 3, pp. 33–66, and refs cit. therein.
- 14 J. Crovisier, ‘Astrobiology: Future Perspectives’, Kluwer/Springer, Dordrecht, 2004, Chapt. 8, p. 179–203, and refs. cit. therein.
- 15 D. Bockelee-Morvan, D. C. Lis, J. E. Wink, Astron. Astrophys. 2000, 353, 1101.
- 16 W. A. Schutte, A. C. A. Boogert, A. G. G. M. Tielens, D. C. B. Whittet, P. A. Gerakines, J. E. Chiar, P. Ehrenfreund, J. M. Greenberg, E. F. van Dishoeck, T. de Graauw, Astron. Astrophys. 1999, 343, 966.
- 17 Personal communication, K. Hand, R. W. Carlson, Department of Geological and Environmental Sciences, Stanford University, September 2006.
- 18 L. E. Orgel, Crit. Rev. Biochem. Mol. Biol. 2004, 39, 99.
- 19 J. Oró, Biochim. Biophys. Res. Commun. 1960, 2, 407.
- 20 J. Oró, Nature 1961, 191, 1193.
- 21 F. H. Westheimer, Science 1987, 235, 1173.
- 22 M. Egholm, O. Buchardt, P. E. Nielsen, R. H. Berg, J. Am. Chem. Soc. 1992, 114, 1895.
- 23 J. G. Schmidt, L. Christensen, P. E. Nielsen, L. E. Orgel, Nucleic Acids Res. 1997, 25, 4792.
- 24 S. A. Benner, D. Hutter, Bioorg. Chem. 2002, 30, 62.
- 25 M. O. Beatler, D. Hutter, S. Benner, Helv. Chim. Acta 2002, 85, 2777.
- 26 S. K. Singh, P. E. Nielsen, A. A. Koshkin, J. Wengel, Chem. Commun. 1998, 455.
- 27 J. Wengel, Acc. Chem. Res. 1999, 32, 301.
- 28 S. Ilin, I. Schlönvogt, M. O. Ebert, B. Jaun, H. Schwalbe, ChemBioChem 2002, 3, 93.
- 29 D. Zhou, I. M. Lagoja, J. Rozenski, R. Busson, A. Van Aerschot, P. Herdewijn, ChemBioChem 2005, 6, 2298.
- 30 R. Declercq, A. Van Aerschot, R. J. Read, P. Herdewijn, L. Van Meervelt, J. Am. Chem. Soc. 2002, 124, 928.
- 31 P. Gu, G. Schepers, C. Griebel, J. Rozenski, H.-J. Gais, P. Herdewijn, A. Van Aerschot, Nucleosides Nucleotides Nucleic Acids 2005, 24, 993.
- 32 K. Schoning, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy, A. Eschenmoser, Science 2000, 290, 1347.
- 33 C. J. Wilds, Z. Wawrzak, R. Krishnamurthy, A. Eschenmoser, M. Egli, J. Am. Chem. Soc. 2002, 124, 13716.
- 34 D. G. Schultz, S. M. Gryaznov, Nucleic Acids Res. 1996, 24, 2966.
- 35 P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, Science 1991, 254, 1497.
- 36 J. G. Schmidt, P. E. Nielsen, L. E. Orgel, Nucleic Acids Res. 1997, 25, 4797.
- 37 H. D. Bean, F. A. L. Anet, I. R. Gould, N. V. Hud, Origins Life Evol. Biosphere 2006, 36, 39.
- 38 R. Pascal, L. Boiteau, A. Commeyras, Top. Curr. Chem. 2005, 259, 69.
- 39 R. Saladino, C. Crestini, G. Costanzo, E. Di Mauro, Top. Curr. Chem. 2005, 259, 29.
- 40 J. P. Ferris, Rev. Mineral. Geochem. 2005, 59, 187.
- 41 Q. W. Chen, C. L. Chen, Curr. Org. Chem. 2005, 9, 989.
- 42 R. Saladino, C. Crestini, G. Costanzo, E. Di Mauro, Curr. Org. Chem. 2004, 8, 1425.
- 43 E. C. T. Kirk-Othmer, in ‘Encyclopedia of Chemical Tecnology, Formic Acid and Derivatives (Formamide)’, Wiley Interscience, 1978, Vol. 11, p. 258.
- 44 R. Saladino, C. Crestini, G. Costanzo, R. Negri, E. Di Mauro, Bioorg. Med. Chem. 2001, 9, 1249.
- 45 R. Saladino, C. Crestini, F. Ciciriello, G. Costanzo, R. Negri, R. E. Di Mauro, ESA, [Special Publication] SP, 2004, SP-545(Proceedings of the III European Workshop on Exo-Astrobiology, 2003, 287).
- 46 R. Saladino, C. Crestini, F. Ciciriello, G. Costanzo, R. Negri, E. Di Mauro, ‘Astrobiology: Future Perspectives’, Kluwer/Springer, Dordrecht, 2004, Chapt. 16, p. 393.
- 47 H. Yamada, T. Okamoto, Chem. Pharm. Bull. 1972, 20, 623.
- 48 H. Yamada, T. Okamoto, Z. Yakugaku, Chem. Pharm. Bull. 1975, 95, 493.
- 49 C. Reid, L. E. Orgel, C. Ponnamperuma, Nature 1967, 216, 936.
- 50 W. D. Fuller, R. A. Sanchez, L. E. Orgel, J. Mol. Biol. 1972, 67, 25.
- 51 E. A. Kuzicheva, N. V. Tsupkina, Zhurnal Evolyutsionnoi Biokhimii i Fiziologii 1978, 14, 213.
- 52 E. Kirkpatrick, to Dupont de Nemours & Co. Inc., U.S. Pat. 134,765, 1944.
- 53 H. Slebocka-Tilk, F. Sauriol, M. Monette, R. S. Brown, Can. J. Chem. 2002, 80, 1343.
- 54 R. Saladino, C. Crestini, V. Neri, F. Ciciriello, G. Costanzo, E. Di Mauro, ChemBioChem 2006, 7, 1707.
- 55 K. T. Suzuki, H. Yamada, M. Hirobe, J. Chem. Soc., Chem. Commun. 1978, 485.
- 56
H. Yamada, M. Hirobe, K. Higashiyama, H. Takahashi, K. T. Suzuki, Tetrahedron Lett. 1978, 19, 4039.
10.1016/S0040-4039(01)95134-2 Google Scholar
- 57 H. Yamada, M. Hirobe, K. Higashiyama, H. Takahashi, K. T. Suzuki, J. Am. Chem. Soc. 1978, 100, 4617.
- 58 S. D. Senanayake, H. Idriss, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1194.
- 59 M. P. Robertson, S. L. Miller, Nature 1995, 375, 772.
- 60 R. Saladino, U. Ciambecchini, C. Crestini, G. Costanzo, R. Negri, E. Di Mauro, ChemBioChem 2003, 4, 541.
- 61 D. A. Friesen, J. V. Haedely, C. H. Langford, Environm. Sci. Technol. 1999, 33, 3193.
- 62 A. S. U. Choughuley, M. S. Chada, A. S. Subbaraman, Biosystems 1977, 9, 73.
- 63 H. W. Gibson, Chem. Rev. 1969, 69, 673.
- 64 R. Saladino, C. Crestini, V. Neri, J. R. Brucato, L. Colangeli, F. Ciciriello, E. Di Mauro, G. Costanzo, ChemBioChem 2005, 6, 1368.
- 65 A. Eschenmoser, E. Loewenthal, Chem. Soc. Rev. 1992, 1.
- 66 R. Saladino, C. Crestini, U. Ciambecchini, F. Ciciriello, G. Costanzo, E. Di Mauro ChemBioChem 2004, 5, 1558.
- 67 J. Oró, A. P. Kimball, Arch. Biochem. Biophys. 1961, 94, 217; A. Eschenmoser, E. Loewenthal, Chem. Soc. Rev. 1992, 21, 1; L. E. Orgel, Trends Biochem. Sci. 1998, 23, 491.
- 68 J. D. Sutherland, J. N. Whitfield, Tetrahedron 1997, 34, 11493.
- 69 G. F. Joyce, Nature 1989, 338, 217.
- 70 G. Zubay, T. Mui, Origins Life Evol. Biosphere 2001, 31, 87.
- 71 W. D. Fuller, R. A. Sanchez, L. E. Orgel, J. Mol. Evol. 1972, 1, 249.
- 72 A. Eschenmoser, Origins Life Evol. Biosphere 1997, 27, 535.
- 73 A. W. Schwartz, P. M. De Graaf, J. Mol. Evol. 1993, 36, 101.
- 74 K. Schöning, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy, A. Eschenmoser, Science 2000, 290, 1347.
- 75 A. A. Ingar, R. W. Luke, B. R. Hayter, J. D. Sutherland, ChemBioChem 2003, 4, 504.
- 76 R. Saladino, C. Crestini, V. Busiello, F. Ciciriello, G. Costanzo, E. Di Mauro, J. Biol. Chem. 2005, 280, 35658.
- 77 I. A. Kozlov, B. De Bouvere, A. Van Aerschot, P. Herdewijn, L. E. Orgel, J. Am. Chem. Soc. 1999, 121, 5856.
- 78 M. Tohidi, L. E. Orgel, J. Mol. Evol. 1989, 28, 367.
- 79 I. A. Kozlov, P. K. Politis, S. Pitsch, P. Herdewijn, L. E. Orgel, J. Am. Chem. Soc. 1999, 121, 1108.
- 80
A. Butlerow, Liebigs Ann. Chem. 1861, 120, 295.
10.1002/jlac.18611200308 Google Scholar
- 81
R. Breslow, Tetrahedron Lett. 1959, 21, 22.
10.1016/S0040-4039(01)99487-0 Google Scholar
- 82 J. E. Rekoske, M. A. Barteau, Langmuir 1999, 15, 2061.
- 83 K. E. Nelson, M. Levy, S. L. Miller, Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 3868.
- 84 A. Beck, R. Lohrmann, L. E. Orgel, Science 1967, 157, 958.
- 85 R. Lohrmann, L. E. Orgel, Science 1968, 161, 64.
- 86 R. Lohrmann, L. E. Orgel, Science 1971, 171, 490.
- 87 R. Lohrmann, J. Mol. Evol. 1977, 10, 137.
- 88 R. Reimann, G. Zubay, Origins Life Evol. Biosphere 1999, 29, 229.
- 89 A. M. Schoffstall, Origins of Life 1976, 7, 399.
- 90 A. M. Schoffstall, R. J. Barto, D. L. Ramos, Origins of Life 1982, 12, 143.
- 91 A. M. Schoffstall, E. M. Laing, Origins of Life 1985, 15, 141.
- 92 A. M. Schoffstall, S. M. Mahone, Origins Life Evol. Biosphere 1988, 18, 389.
- 93 K. Van Holde, ‘The Origins of Life and Evolution’, Eds. H. O. Halvorson and K. E. van Holde, Alan R. Liss, Inc., New York, 1980, p. 31.
- 94 C. Cheng, C. Fan, R. Wan, C. Tong, Z. Miao, J. Chen, Y. Zhao, Origins Life Evol. Biosphere 2002, 32, 219.
- 95 J. P. Ferris, H. Yanagawa, W. J. Hagan Jr., Origins of Life 1984, 14, 99.
- 96 D. Müller, S. Pitsch, A. Kittaka, E. Wagner, C. E. Witner, A. Eschenmoser, Helv. Chim. Acta 1990, 73, 1410.
- 97 R. M. De Graaf, J. Visscher, A. W. Schwartz, Origins Life Evol. Biosphere 1998, 28, 271.
- 98 A. W. Schwartz, J. Theor. Biol. 1997, 187, 523.
- 99
G. von Kiedroski, Angew. Chem., Int. Ed. 1986, 25, 932.
10.1002/ange.19860981029 Google Scholar
- 100
G. von Kiedroski, Biorg. Chem. Front. 1993, 3, 113.
10.1007/978-3-642-78110-0_4 Google Scholar
- 101 L. E. Orgel, Nature 1992, 358, 203.
- 102 D. Sievers, G. von Kiedrowski, Nature 1994, 369, 221.
- 103 K. C. Li, T. Nicolai, Nature 1994, 369, 218.
- 104 J. Sulston, R. Lohrmann, L. E. Orgel, H. T. Miles, Proc. Natl. Acad. Sci. U.S.A. 1968, 59, 726.
- 105 B. J. Wieman, R. Lohrmann, L. E. Orgel, H. Schneider-Bernloehr, J. E. Sulston, Science 1968, 161, 387.
- 106 G. F. Joyce, T. Inoue, L. E. Orgel, J. Mol. Biol. 1984, 176, 279.
- 107 K. J. Prabahar, J. P. Ferris, J. Am. Chem. Soc. 1997, 119, 4330.
- 108 J. P. Ferris, A. R. Hill Jr., R. Liu, L. E. Orgel, Nature 1996, 381, 59.
- 109 G. Ertem, J. P. Ferris, Nature 1996, 379, 238.
- 110 G. Ertem, J. P. Ferris, Origins Life Evol. Biosphere 1998, 28, 485.
- 111 A. R. Hill, L. E. Orgel, T. Wu, Origins Life Evol. Biosphere 1993, 23, 285.
- 112 M. Renz, R. Lohrmann, L. E. Orgel, Biochim. Biophys. Acta 1971, 240, 463.
- 113 G. A. Soukup, R. R. Breaker, RNA 1999, 5, 1308.
- 114 D. A. Usher, A. H. McHale, Science 1976, 192, 53.
- 115 D. A. Usher, A. H. McHale, Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 1149.
- 116 J. A. Gerlt, F. H. Westheimer, J. M. Sturtevant, J. Biol. Chem. 1975, 250, 463.
- 117 F. H. Westheimer, Acc. Chem. Res. 1968, 1, 70.
- 118 S. C. Mohr, R. E. Thach, J. Biol. Chem. 1969, 244, 6566.
- 119 J. E. Ermen, G. G. Hammes, J. Am. Chem. Soc. 1996, 88, 5607.
- 120 N. K. Kochetkov, E. I. Budovskii, E. D. Sverdlov, N. A. Simukova, M. F. Turchinskii, V. N. Shibaev, in ‘Organic Chemistry of Nucleic Acids’, Eds. N. K. Kochetkov, E. I. Budovskii, Plenum Press, London, New York, 1972, Part B, Chapt. 8, p. 425, and Chapt. 10, p. 472.
- 121 R. Shapiro, S. Kang, Biochemistry 1969, 8, 1806.
- 122 E. R. Garrett, P. J. Mehta, J. Am. Chem. Soc. 1972, 94, 8542.
- 123 T. Lindahl, O. Karlström, Biochemistry 1973, 12, 5151.
- 124 H. S. Shapiro, E. Chargaff, Biochim. Biophys. Acta 1957, 26, 596.
- 125 H. Venner, Hoppe Seylers Z. Physiol. Chem. 1966, 344, 189.
- 126 R. Shapiro, M. Danzig, Biochim. Biophys. Acta 1973, 319, 5.
- 127 T. Lindahl, B. Nyberg, Biochemistry 1972, 11, 3610.
- 128 R. Saladino, E. Mincione, C. Crestini, R. Negri, E. Di Mauro, G. Costanzo, J. Am. Chem. Soc. 1996, 118, 5615.
- 129 R. Saladino, C. Crestini, F. Ciciriello, E. Di Mauro, G. Costanzo, J. Biol. Chem. 2006, 281, 5790.
- 130 R. Saladino, C. Crestini, E. Mincione, G. Costanzo, E. Di Mauro, R. Negri, Bioorg. Med. Chem. 1997, 5, 2041.
- 131 R. Negri, G. Costanzo, R. Saladino, E. Di Mauro, BioTechniques 1996, 21, 910.
- 132 F. Darwin, ‘The Life and Letters of Charles Darwin’, John Murray, London, 1888, Vol. 3, p. 18 (letter to Joseph Hooker).
- 133 M. S. Akhter, S. M. Alawi, Colloids Surf. 2003, 219, 281.
- 134 H. Shirota, H. Segawa, Langmuir 2004, 20, 329.