Ribozyme Catalysis of Metabolism in the RNA World
Xi Chen
Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
Search for more papers by this authorNa Li
Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
Search for more papers by this authorAndrew D. Ellington
Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
Search for more papers by this authorXi Chen
Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
Search for more papers by this authorNa Li
Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
Search for more papers by this authorAndrew D. Ellington
Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
Search for more papers by this authorAbstract
In vitro selection has proven to be a useful means of explore the molecules and catalysts that may have existed in a primoridal ‘RNA world’. By selecting binding species (aptamers) and catalysts (ribozymes) from random sequence pools, the relationship between biopolymer complexity and function can be better understood, and potential evolutionary transitions between functional molecules can be charted. In this review, we have focused on several critical events or transitions in the putative RNA world: RNA self-replication; the synthesis and utilization of nucleotide-based cofactors; acyl-transfer reactions leading to peptide and protein synthesis; and the basic metabolic pathways that are found in modern living systems.
References
- 1 G. F. Joyce, Nature 2002, 418, 214.
- 2 L. E. Orgel, Crit. Rev. Biochem. Mol. Biol. 2004, 39, 99.
- 3 D. Sievers, G. von Kiedrowski, Nature 1994, 369, 221.
- 4 W. S. Zielinski, L. E. Orgel, Nature 1987, 327, 346.
- 5 M. D. Been, T. R. Cech, Science 1988, 239, 1412.
- 6 D. P. Bartel, J. W. Szostak, Science 1993, 261, 1411.
- 7 A. J. Hager, J. W. Szostak, Chem. Biol. 1997, 4, 607.
- 8 K. B. Chapman, J. W. Szostak, Chem. Biol. 1995, 2, 325.
- 9 E. H. Ekland, D. P. Bartel, Nature 1996, 382, 373.
- 10 T. Pan, O. C. Uhlenbeck, Nature 1992, 358, 560.
- 11 K. P. Williams, S. Ciafre, G. P. Tocchini-Valentini, EMBO J. 1995, 14, 4551.
- 12 V. K. Jayasena, L. Gold, Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 10612.
- 13 M. P. Robertson, A. D. Ellington, Nat. Biotechnol. 1999, 17, 62.
- 14 E. H. Ekland, J. W. Szostak, D. P. Bartel, Science 1995, 269, 364.
- 15 J. R. Lorsch, J. W. Szostak, Nature 1994, 371, 31.
- 16 F. Huang, C. W. Bugg, M. Yarus, Biochemistry 2000, 39, 15548.
- 17 F. Huang, M. Yarus, Biochemistry 1997, 36, 6557.
- 18 R. K. Kumar, M. Yarus, Biochemistry 2001, 40, 6998.
- 19 W. K. Johnston, P. J. Unrau, M. S. Lawrence, M. E. Glasner, D. P. Bartel, Science 2001, 292, 1319.
- 20 M. S. Lawrence, D. P. Bartel, RNA 2005, 11, 1173.
- 21 T. Tuschl, P. A. Sharp, D. P. Bartel, EMBO J. 1998, 17, 2637.
- 22 M. Illangasekare, G. Sanchez, T. Nickles, M. Yarus, Science 1995, 267, 643.
- 23 P. A. Lohse, J. W. Szostak, Nature 1996, 381, 442.
- 24 A. Jenne, M. Famulok, Chem. Biol. 1998, 5, 23.
- 25 H. Saito, D. Kourouklis, H. Suga, EMBO J. 2001, 20, 1797.
- 26 N. Li, F. Huang, Biochemistry 2005, 44, 4582.
- 27 T. W. Wiegand, R. C. Janssen, B. E. Eaton, Chem. Biol. 1997, 4, 675.
- 28 B. Zhang, T. R. Cech, Nature 1997, 390, 96.
- 29 L. Sun, Z. Cui, R. L. Gottlieb, B. Zhang, Chem. Biol. 2002, 9, 619.
- 30 M. Illangasekare, M. Yarus, RNA 1999, 5, 1482.
- 31 P. J. Unrau, D. P. Bartel, Nature 1998, 395, 260.
- 32 C. Wilson, J. W. Szostak, Nature 1995, 374, 777.
- 33 M. Wecker, D. Smith, L. Gold, RNA 1996, 2, 982.
- 34 G. Sengle, A. Eisenfuhr, P. S. Arora, J. S. Nowick, M. Famulok, Chem. Biol. 2001, 8, 459.
- 35 V. R. Jadhav, M. Yarus, Biochemistry 2002, 41, 723.
- 36 T. M. Coleman, F. Huang, Chem. Biol. 2002, 9, 1227.
- 37 T. M. Tarasow, S. L. Tarasow, B. E. Eaton, Nature 1997, 389, 54.
- 38 B. Seelig, A. Jaschke, Chem. Biol. 1999, 6, 167.
- 39 S. Fusz, A. Eisenfuhr, S. G. Srivatsan, A. Heckel, M. Famulok, Chem. Biol. 2005, 12, 941.
- 40 Y. Ryu, K. J. Kim, C. A. Roessner, A. I. Scott, Chem. Commun. 2006, 1439.
- 41 S. Tsukiji, S. B. Pattnaik, H. Suga, Nat. Struct. Biol. 2003, 10, 713.
- 42 M. M. Conn, J. R. Prudent, P. G. Schultz, J. Am. Chem. Soc. 1996, 118, 7012.
- 43 J. R. Prudent, T. Uno, P. G. Schultz, Science 1994, 264, 1924.
- 44 M. Levy, A. D. Ellington, Nat. Struct. Biol. 2001, 8, 580.
- 45 J. A. Doudna, J. W. Szostak, Nature 1989, 339, 519.
- 46 J. A. Doudna, S. Couture, J. W. Szostak, Science 1991, 251, 1605.
- 47 R. Green, J. W. Szostak, Science 1992, 258, 1910.
- 48 J. Rogers, G. F. Joyce, RNA 2001, 7, 395.
- 49 N. Paul, G. F. Joyce, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12733.
- 50 D. E. Kim, G. F. Joyce, Chem. Biol. 2004, 11, 1505.
- 51 H. B. White, in ‘The Pyridine Nucleotide Coenzymes’, Eds. J. Everse, K. Anderson, K.-S. Yu, Academic Press, New York, 1982, p. 1–17.
- 52 A. D. Keefe, G. L. Newton, S. L. Miller, Nature 1995, 373, 683.
- 53 M. J. Dowler, W. D. Fuller, L. E. Orgel, R. A. Sanchez, Science 1970, 169, 1320.
- 54 S. Tsukiji, S. B. Pattnaik, H. Suga, J. Am. Chem. Soc. 2004, 126, 5044.
- 55 R. R. Breaker, G. F. Joyce, J. Mol. Evol. 1995, 40, 551.
- 56 F. Huang, M. Yarus, Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 8965.
- 57 D. Proske, M. Blank, R. Buhmann, A. Resch, Appl. Microbiol. Biotechnol. 2005, 69, 367.
- 58 J. F. Lee, G. M. Stovall, A. D. Ellington, Curr. Opin. Chem. Biol. 2006, 10, 282.
- 59 D. H. Bunka, P. G. Stockley, Nat. Rev. Microbiol. 2006, 4, 588.
- 60 M. Sassanfar, J. W. Szostak, Nature 1993, 364, 550.
- 61 T. Dieckmann, E. Suzuki, G. K. Nakamura, J. Feigon, RNA 1996, 2, 628.
- 62 F. Jiang, R. A. Kumar, R. A. Jones, D. J. Patel, Nature 1996, 382, 183.
- 63 P. Burgstaller, M. Famulok, Angew. Chem., Int. Ed. 1994, 33, 1084.
- 64 D. H. Burke, L. Gold, Nucleic Acids Res. 1997, 25, 2020.
- 65 K. A. Marshall, M. P. Robertson, A. D. Ellington, Structure 1997, 5, 729.
- 66 D. H. Burke, D. C. Hoffman, Biochemistry 1998, 37, 4653.
- 67 M. Meli, J. Vergne, J. L. Decout, M. C. Maurel, J. Biol. Chem. 2002, 277, 2104.
- 68 M. Koizumi, R. R. Breaker, Biochemistry 2000, 39, 8983.
- 69 P. L. Sazani, R. Larralde, J. W. Szostak, J. Am. Chem. Soc. 2004, 126, 8370.
- 70 C. T. Lauhon, J. W. Szostak, J. Am. Chem. Soc. 1995, 117, 1246.
- 71 M. Roychowdhury-Saha, S. M. Lato, E. D. Shank, D. H. Burke, Biochemistry 2002, 41, 2492.
- 72 D. M. Held, S. T. Greathouse, A. Agrawal, D. H. Burke, J. Mol. Evol. 2003, 57, 299.
- 73 D. Saran, J. Frank, D. H. Burke, BMC Evol. Biol. 2003, 3, 26.
- 74 W. P. Jencks, in ‘ Handbook of Biochemistry and Molecular Biology. Physical and Chemical Data, Vol. I’, 3rd edn., Ed. G. D. Fasman, CRC Press, Cleveland, 1976, p. 296–304.
- 75 S. A. Benner, A. D. Ellington, A. Tauer, Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 7054.
- 76 F. Huang, Nucleic Acids Res. 2003, 31, e8.
- 77 N. Lee, Y. Bessho, K. Wei, J. W. Szostak, H. Suga, Nat. Struct. Biol. 2000, 7, 28.
- 78 T. A. Steitz, P. B. Moore, Trends Biochem. Sci. 2003, 28, 411.
- 79 K. E. Chapple, D. P. Bartel, P. J. Unrau, RNA 2003, 9, 1208.
- 80 P. J. Unrau, D. P. Bartel, Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15393.
- 81 M. W. Lau, K. E. Cadieux, P. J. Unrau, J. Am. Chem. Soc. 2004, 126, 15686.