Modeling the heme vibrational spectrum: Normal-mode analysis of nickel (II) etioporphyrin-I from resonance raman, ft-raman, and infrared spectra of multiple isotopomers
Songzhou Hu
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
Search for more papers by this authorArka Mukherjee
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
Search for more papers by this authorChristine Piffat
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
Search for more papers by this authorRonald S. W. Mak
Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Search for more papers by this authorXiao-Yuan Li
Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Search for more papers by this authorCorresponding Author
Thomas G. Spiro
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
Department of Chemistry, Princeton University, Princeton, New Jersey 08540Search for more papers by this authorSongzhou Hu
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
Search for more papers by this authorArka Mukherjee
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
Search for more papers by this authorChristine Piffat
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
Search for more papers by this authorRonald S. W. Mak
Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Search for more papers by this authorXiao-Yuan Li
Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Search for more papers by this authorCorresponding Author
Thomas G. Spiro
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
Department of Chemistry, Princeton University, Princeton, New Jersey 08540Search for more papers by this authorAbstract
Nearly complete vibrational assignments have been obtained for a heme model, nickel etioporphyrin-I (NiEPI), using variable-wavelength resonance Raman (RR), and FT-Raman (FT-R), as well as infrared (IR) spectroscopy, on a series of isotopomers labeled at positions in the skeleton (15N, β-13C, meso-d4, 15N-meso-d4) and in the peripheral substituents (methyl-d12, ethyl-d8, and ethyl-d12). The vibrational bands are assigned to the porphyrin skeletal and substituent modes on the basis of the mode description scheme developed for nickel octaethylporphyrin (NiOEP) with the aid of a normal-mode analysis of NiEPI, explicitly including the peripheral substituents, i.e., the methyl and ethyl groups. The previously reported NiOEP force field was refined to account for the observed isotope shifts of NiEPI isotopomers. An important result is the requirement of relatively large, long-range force constants for methine bridge bonds on opposite sides of the porphyrin ring. These 1–8 and 1–9 interaction force constants are required to reproduce the frequencies and isotope shifts of six Cα-Cm stretching modes and especially to predict the relative order of the two highest-frequency Eu modes, v(Cα-Cm) (v38, ∼ 1570 cm−1) and v(Cβ-Cβ) (v37, ∼ 1600 cm−1). Most of the substituent (methyl and ethyl) vibrations are located in the RR and IR spectra. Strong RR enhancement of some substituent modes can be attributed to hyperconjugative interaction of the aliphatic groups with the porphyrin a1u orbital, as well as vibrational mixing of substituent modes with the nearby skeletal modes. © 1995 John Wiley & Sons, Inc.
References
- 1 T. G. Spiro and T. C. Strekas, “Resonance Raman spectra of hemoglobin and cytochromec. Inverse polarization and vibronic scattering,” Proc. Nat. Acad. Sci. USA, 69, 2622–2626 (1972).
- 2 T. C. Strekas and T. G. Spiro, “Cytochromec. Resonance Raman spectra,” Biochim. Biophys. Acta, 278, 188–192 (1972).
- 3 T. G. Spiro, Biological Applications of Raman Spectroscopy. Wiley, New York, 1988.
- 4 M. Abe, Normal coordinate analysis of large molecules of biological interest: Metalloporphyrins and lumiflavin, in Spectroscopy of Biological Systems, ed. by R. J. H. Clark and R. E. Hester, Wiley, New York, 1986, pp. 347–393.
- 5 T. Kitagawa and Y. Ozaki, “Infrared and Raman spectra of metalloporphyrins,” Struct. Bonding, 64, 71–114 (1987).
- 6 T. G. Spiro, R. S. Czernuszewicz, and X. Y. Li, “Metalloporphyrin structure and dynamics from resonance Raman spectroscopy,” Coord. Chem. Rev., 100, 541–571 (1990).
- 7 T. G. Spiro, G. Smulevich, and C. Su, “Probing protein structure and dynamics with resonance Raman spectroscopy: Cytochrome c peroxidase and hemoglobin,” Biochemistry, 29, 4497–4508 (1990).
- 8 A. D. Procyk and D. F. Bocian, “Vibrational characteristics of tetrapyrrolic macrocycles,” Ann. Rev. Phys. Chem., 43, 465–496 (1992).
- 9 M. Abe, T. Kitagawa, and Y. Kyogoku, “Resonance Raman spectra of octaethylporphyrinatonickel (II) and meso-deuterated and nitrogen-15 substituted derivatives. II. A normal coordinate analysis,” J. Chem. Phys., 69, 4526–4534 (1978).
- 10 X. Y. Li, R. S. Czernuszewicz, J. R. Kincaid, Y. O. Su, and T. G. Spiro, “Consistent porphyrin force field. 1. Normal-mode analysis for nickel porphine and nickel tetraphenylporphine from resonance Raman and infrared spectra and isotope shifts,” J. Phys. Chem., 94, 31–47 (1990).
- 11 X. Y. Li, R. S. Czernuszewicz, J. R. Kincaid, P. Stein, and T. G. Spiro, “Consistent porphyrin force field. 2. Nickel octaethylporphyrin skeletal and substituent mode assignments from nitrogen-15, meso-d4, and methylene-d16 Raman and infrared isotope shifts,” J. Phys. Chem., 94, 47–61 (1990).
- 12 X. Y. Li, R. S. Czernuszewicz, J. R. Kincaid, and T. G. Spiro, “Consistent porphyrin force field. 3. Out-of-plane modes in the resonance Raman spectra of planar and ruffled nickel octaethylporphyrin,” J. Am. Chem. Soc., 111, 7012–7023 (1989).
- 13 L. L. Gladkov and K. N. Solovyov, “The normal coordinate analysis of porphin and its derivatives based on the solution of the inverse spectral problem for porphin and cu porphin. I. A valence force field for in-plane vibrations of the porphin molecule,” Spectrochim. Acta, 41A, 1437–1442 (1985).
- 14 L. L. Gladkov and K. N. Solovyov, “The normal coordinate analysis of porphin and its derivatives based on the solution of the inverse spectral problem for porphin and Cu porphin. II. A valence force field for in-plane vibrations of the Cu porphin molecule,” Spectrochim. Acta, 41A, 1443–1448 (1985).
- 15 L. L. Gladkov and K. N. Solovyov, “Normal coordinate analysis of porphin and its derivatives based on the solution of the inverse spectral problem for porphin and Cu porphin. III. Interpretation of vibrational spectra of metal complexes of octamethylporphyrin and octaethylporphin,” Spectrochim. Acta, 42A, 1–10 (1986).
- 16 L. D. Spaulding, C. C. Chang, N. Yu, and R. H. Felton, “Resonance Raman spectra of metalloporphyrins. A structural probe of metal displacement,” J. Am. Chem. Soc., 97, 2517–2525 (1975).
- 17 N. Parthasarathi, C. Hansen, S. Yamaguchi, and T. G. Spiro, “Metalloporphyrin core size resonance Raman marker bands revisited: Implications for the interpretation of hemoglobin photoproduct Raman frequencies,” J. Am. Chem. Soc., 109, 3865–3871 (1987).
- 18 K. Prendergast and T. G. Spiro, “Core expansion, ruffling, and doming effects on metalloporphyrin vibrational frequencies,” J. Am. Chem. Soc., 114, 3793–3801 (1992).
- 19 H. Yamaguchi, M. Nakano, and K. Itoh, “Resonance Raman scattering study on the cation radicals of magnesium, zinc, and copper tetraphenylporphines,” Chem. Lett., 1397–1400 (1982).
- 20 D. Kim, L. Miller, O. Su, J. Terner, and T. G. Spiro, “ Resonance Raman studies of porphyrin radical cations, excited states, and ligation photodynamics,” ACS Symp. Ser., 321, 248–265 (1986).
- 21 R. S. Czernuszewicz, K. A. Macor, X. Y. Li, J. R. Kincaid, and T. G. Spiro, “Resonance Raman spectroscopy reveals alu vs. a2u character and pseudo-Jahn-Teller distortion in radical cations of nickel(II), copper(II), and chloroiron(III) octaethyl- and tetraphenylporphyrins,” J. Am. Chem. Soc., 111, 3860–3869 (1989).
- 22 K. A. Macor, R. S. Czernuszewicz, and T. G. Spiro, “Influence of porphyrin radical type on vanadium-oxygen double bond strength in vanadyl porphyrin cation radicals: Implications for heme protein intermediates,” Inorg. Chem., 29, 1996–2000 (1990).
- 23 A. Salehi, W. A. Oertling, G. T. Babcock, and C. K. Chang, “One-electron oxidation of the porphyrin ring of cobaltous octaethylporphyrin (CoIIOEP). Absorption and resonance Raman spectral characteristics of the CoIIOEP+·CIO4− cation radical,” J. Am. Chem. Soc., 108, 5630–5631 (1986).
- 24 W. A. Oertling, A. Salehi, C. K. Chang, and G. T. Babcock, “Resonance Raman vibrational analysis of copper(II), iron(III), and cobalt(III) porphyrin cation radicals and their meso-deuteriated analogs,” J. Phys. Chem., 93, 1311–1319 (1989).
- 25 W. A. Oertling, A. Salehi, Y. C. Chung, G. E. Leroi, C. K. Chang, and G. T. Babcock, “Vibrational, electronic, and structural properties of cobalt, copper, and zinc octaethylporphyrin cation radicals,” J. Phys. Chem., 91, 5887–5898 (1987).
- 26 W. A. Oertling, A. Salehi, C. K. Chang, and G. T. Babcock, “Resonance Raman spectroscopic detection of demetallation of metalloporphyrin cation radicals,” J. Phys. Chem., 91, 3114–3116 (1987).
- 27 S. Hashimoto, Y. Mizutani, Y. Tatsuno, and T. Kitagawa, “Resonance Raman characterization of ferric and ferryl porphyrin cation radicals and the FeIV:0 stretching frequency,” J. Am. Chem. Soc., 113, 6542–6549 (1991).
- 28 S. Hu, C.-Y. Lin, M. E. Blackwood, A. Mukherjee, and T. G. Spiro, “Resonance Raman structural characterization of β-substituted metalloporphyrin π-anion radicals: Nature of the Jahn-Teller effect,” J. Phys. Chem., 99, 9694–9701 (1995).
- 29 S. Sato, M. Asano-Someda, and T. Kitagawa, “Time-resolved resonance Raman spectra of freebase octaethylporphyrin in the S1 and T1 states,” Chem. Phys. Lett., 189, 443–447 (1992).
- 30 S. E. J. Bell, A. H. R. Al-Obaidi, M. J. N. Hegarty, J. J. McGarvey, and R. E. Hester, “Resonance Raman spectra of the triplet state of free-base tetra-phenylporphyrin and six of its isotopomers,” J. Phys. Chem., 99, 3959–3964 (1995).
- 31 S. E. J. Bell, C. B. Aakeroy, A. H. R. Al-Obaidi, et al., “Time-resolved resonance Raman spectroscopy of triplet-state metalated and free-base tetraaryl-porphyrins,” J. Chem. Soc. Faraday Trans., 91, 411–418 (1995).
- 32 S. E. J. Bell, A. H. R. Al-Obaidi, M. Hegarty, R. E. Hester, and J. J. McGarvey, “Time-resolved resonance Raman spectroscopy of excited singlet and triplet states of free-base meso-tetraphenylporphyrin,” J. Phys. Chem., 97, 11599–11602 (1993).
- 33 R. Kumble, G. R. Loppnow, S. Hu, A. Mukherjee, M. A. Thompson, and T. G. Spiro, “Studies of the vibrational and electronic structure of the S1 excited states of beta-substituted porphyrins by picosecond time-resolved resonance Raman spectroscopy,” J. Phys. Chem., 99, 5809–5816 (1995).
- 34 R. Kumble, S. Hu, G. R. Loppnow, S. E. Vitols, and T. G. Spiro, “A time-resolved resonance Raman study of the T1 excited state of zinc(II) octaalkyl-porphyrins,” J. Phys. Chem., 97, 10521–10523 (1993).
- 35 V. A. Walters, J. C. de Paula, G. T. Babcock, and G. E. Leroi, “Resonance Raman spectrum of the lowest triplet state of zinc(II) tetraphenylporphyrin,” J. Am. Chem. Soc., 111, 8300–8302 (1989).
- 36 J. C. de Paula, V. A. Walters, C. Nutaitis, J. Lind, and K. Hall, “Transient resonance Raman spectrum of meso-tetraphenylporphine: An analysis of chemical factors that influence the dynamics of the excited triplet states of metalloporphyrins,” J. Phys. Chem., 96, 10591–10594 (1992).
- 37 D. H. Kreszowski, G. Deinum, and G. T. Babcock, “Picosecond time-resolved resonance Raman scattering from zinc(II) octaethylporphyrin,” J. Am. Chem. Soc., 116, 7463–7464 (1994).
- 38 K. Prendergast and T. G. Spiro, “Tracking chlorin and porphyrin modes with a general valence force field: Normal-mode analysis of nickel octaethylchlorin,” J. Phys. Chem., 95, 1555–1563 (1991).
- 39 D. Melamed, J. Sullivan, P. Eric, K. Prendergast, S. H. Strauss, and T. G. Spiro, “Analysis of a siroheme model compound: Core-size dependence of resonance Raman bands and the siroheme spin state in sulfite reductase,” Inorg. Chem., 30, 1308–1319 (1991).
- 40 S. Hu, A. Mukherjee, and T. G. Spiro, “Synthesis, vibrational spectra, and normal mode analysis of nickel(II) 1,5-dihydroxy-15-dimethyloctaethylbacteriochlorin: A model for bacteriochlorophylls,” J. Am. Chem. Soc., 115, 12366–12377 (1993).
- 41 S. Hu and T. G. Spiro, “The origin of infrared marker bands of porphyrin π-cation radicals: Infrared assignments for cations of copper(II) complexes of octaethylporphine and tetraphenylporphine,” J. Am. Chem. Soc., 115, 12029–12034 (1993).
- 42 S. Choi and T. G. Spiro, “Out-of-plane deformation modes in the resonance Raman spectra of metalloporphyrins and heme proteins,” J. Am. Chem. Soc., 105, 3683–3692 (1983).
- 43 S. Choi, T. G. Spiro, K. C. Langry, and K. M. Smith, “Vinyl influences on protoheme resonance Raman spectra: Nickel(II) protoporphyrin IX with deuterated vinyl groups,” J. Am. Chem. Soc., 104, 4337 (1982).
- 44 H. Lee, T. Kitagawa, M. Abe, R. K. Pandey, H. K. Leung, and K. M. Smith, “Characterization of low frequency resonance Raman bands of metallo-protoporphyrin. IX. Observation of isotope shifts and normal coordinate treatments,” J. Mol. Struct., 146, 329–347 (1986).
- 45 M. Momenteau, J. Mispelter, B. Loock, and J. M. Lhoste, “15N-Etioporphyrin I and its copper complexes: Proton and electron magnetic resonance characterization,” Can. J. Chem., 56, 2598–2604 (1978).
- 46 K. M. Smith and F. Eivazi, “On the synthesis of etioporphyrin by monopyrrole tetramerization,” J. Org. Chem., 44, 2591–2592 (1979).
- 47 J. G. Rankin and R. S. Czernuszewicz, “Fingerprinting petroporphyrin structures with vibrational spectroscopy: Resonance Raman spectra of nickel and vanadyl etioporphyrins I and III,” Organ. Geochem., 20, 521–538 (1993).
- 48 G. M. Godziela, S. K. Kramer, and H. M. Goff, “Rapid base-catalyzed deuterium exchange at the ring-adjacent methyl and methylene positions of octaalkyl and natural-drivative porphyrins and metalloporphyrins,” Inorgan. Chem., 25, 4286–4288 (1986).
- 49 A. Mukherjee and T. G. Spiro, “The Svib program: An expert system for vibrational analysis,” QCPE Bull., 15, Program 656 (1995).
- 50
C. L. Lau and
R. G. Snyder,
“A valence force field for alkyl benzenes toluene, p-xylene, m-xylene mesitylene, and some of their duterated analogues,”
Spectrochim. Acta,
27A, 2073–2088
(1971).
10.1016/0584-8539(71)80105-8 Google Scholar
- 51 J. R. Kincaid, M. W. Urban, T. Watanabe, and K. Nakamoto, “Infrared spectra of matrix-isolated metal complexes of octaethylporphine,” J. Phys. Chem., 87, 3096–3101 (1987).
- 52 H. Sellers, P. Pulay, and J. E. Boggs, “Theoretical prediction of vibrational spectra. 2. Force field, spectroscopically refined geometry, and reassignment of the vibrational spectrum of naphthalene,” J. Am. Chem. Soc., 107, 6487–6494 (1985).
- 53 M. Majoube and G. Vergoten, “Vibrational spectra of indole and assignments on the basis of ab initio force fields,” J. Raman Spectrosc., 23, 431–444 (1992).
- 54 M. Tsuboi, Y. Nishimura, A. Y. Hirakawa, and W. L. Peticolas, Resonance Raman spectroscopy and normal modes of the nucleic acid bases, in Biological Applications of Raman Spectroscopy, ed. by T. G. Spiro, Wiley, New York, 1988, pp. 109–179.
- 55 W. R. Scheidt and Y. J. Lee, “Recent advances in the stereochemistry of metallotetrapyrroles,” Struct. Bonding, 64, 1–70 (1987).
- 56
N. B. Colthup,
L. H. Daly, and
S. E. Wiberly,
Introduction to Infrared and Raman Spectroscopy,
3rd ed.,
Academic Press, New York,
1990.
10.1016/B978-0-08-091740-5.50014-4 Google Scholar
- 57 S. Hu, I. K. Morris, J. P. Singh, K. M. Smith, and T. G. Spiro, “Complete assignment of cytochrome c resonance Raman spectra via enzymic reconstitution with isotopically labeled hemes,” J. Am. Chem. Soc., 115, 12446–12458 (1993).
- 58 R. Schweitzer-Stenner, “Revisited depolarization ratio dispersion of Raman fundamentals from heme c in ferrocytochrome c confirms that asymmetric perturbations affect the electronic and vibrational structure of the chromophore's macrocycle,” J. Phys. Chem., 98, 9374–9379 (1994).
- 59 X.-Y. Li, N.-T. Yu, and D.-M. Chen, to appear (1995).
- 60 R. S. W. Mak, X.-Y. Li, S. Hu, and T. G. Spiro, to appear (1995).
- 61 L. Libit and R. Hoffmann, “Toward a detailed orbital theory of substituent effects: Charge transfer, polarization, and the methyl group,” J. Am. Chem. Soc., 96, 1370–1383 (1974).