FT-IR spectroscopic studies on molecular interactions of cryoprotectant agents with bacteria
Corresponding Author
Widad Zeroual
Laboratoire de Spectroscopie Biomoléculaire, UFR de Pharmacie, 51096 Reims Cedex, France
LCPE-CNRS 405, rue de Vandoeuvre, 54600 Villers-Lès-Nancy, France Tel: (33) 83 91 63 00 Fax: (33) 83 27 54 44Search for more papers by this authorJean Marc Millot
Laboratoire de Spectroscopie Biomoléculaire, UFR de Pharmacie, 51096 Reims Cedex, France
Search for more papers by this authorClaude Choisy
Laboratoire de Bactériologie Virologie-Immunologie, UFR de Pharmacie, 51096 Reims Cedex, France
Search for more papers by this authorMichel Manfait
Laboratoire de Spectroscopie Biomoléculaire, UFR de Pharmacie, 51096 Reims Cedex, France
Search for more papers by this authorCorresponding Author
Widad Zeroual
Laboratoire de Spectroscopie Biomoléculaire, UFR de Pharmacie, 51096 Reims Cedex, France
LCPE-CNRS 405, rue de Vandoeuvre, 54600 Villers-Lès-Nancy, France Tel: (33) 83 91 63 00 Fax: (33) 83 27 54 44Search for more papers by this authorJean Marc Millot
Laboratoire de Spectroscopie Biomoléculaire, UFR de Pharmacie, 51096 Reims Cedex, France
Search for more papers by this authorClaude Choisy
Laboratoire de Bactériologie Virologie-Immunologie, UFR de Pharmacie, 51096 Reims Cedex, France
Search for more papers by this authorMichel Manfait
Laboratoire de Spectroscopie Biomoléculaire, UFR de Pharmacie, 51096 Reims Cedex, France
Search for more papers by this authorAbstract
Fourier transform infrared spectroscopy was used to investigate, without any destructive interference, interactions of the cryoprotective agents, glycerol and dimethyl sulfoxide with Bradyrhizobium japonicum. The intracellular spectrum of glycerol, obtained by subtracting the spectrum of control bacteria from that of glycerol-treated bacteria, showed no differences in infrared features compared to that of pure glycerol. This was not the case when dimethyl sulfoxide treatment was used. The intracellular spectrum displayed important modifications compared to that of the pure chemical. Spectral analysis showed that glycerol and dimethyl sulfoxide uptake required only a few minutes. Moreover, the infrared features resulting from the presence of pure glycerol, in bacteria, were still existent for up to 2 or 3 hours after thawing process. The deconvoluted Amide I and Amide II bands of bacterial proteins reflected important changes in secondary structure after treatment of bacteria with dimethyl sulfoxide (increase in β-sheet and loss of random coil content). In contrast to glycerol, the cryoprotective action of dimethyl sulfoxide probably involves interactions with a wide range of intrabacterial species. © 1995 John Wiley & Sons, Inc.
References
- 1 N. Bissonnette and R. Lalande, “High survivability of cheese whey-grown Rhizobium meliloti cells upon exposure to physical stress,” Appl. Environ. Microb., 54, 183–187 (1988).
- 2 D. Naumann, D. Helm, H. Labishinski, and P. Giesbrecht, The characterisation of microorganisms by Fourier-transform infrared spectroscopy, in Modern Techniques for Rapid Microbiological Analysis, ed. by W. H. Nelson, Verlag Chemie, New York, 1992, pp. 43–95.
- 3 G. T. J. Anchordo, A. S. Rudolph, J. F. Carpenter, and J. H. Crowe, “Modes of interaction of cryoprotectants with membrane phospholipids during freezing,” Cryobiology, 24, 324–331 (1987).
- 4 H. Hadjuk and M. Fik, “Application of glycerol to freezing bovine pancreas,” Die Nahrung, 34, 75–79 (1990).
- 5 N. Kharasch and B. S. Thyagarajan, “Structural basis of biological activities of dimethyl sulfoxide,” Ann. N. Y. Aca. Sci., 391–402 (1983).
- 6 P. H. Calcott and R. A. MacLeod, “The survival of Escherichia coli from freeze-thaw damage: the relative importance of wall and membrane damage,” Can. J. Microbiol., 21, 1960–1968 (1975).
- 7 J. Higgins, N. A. Hodges, C. J. Ollif, and A. J. Phillips, “Comparative investigation of glycinebetaine and dimethylsulfoxide as liposome cryoprotectants,” J. Pharm. Pharmacol., 39, 577–582 (1987).
- 8 J. L. R. Arrondo, A. M. Gilles, O. Barzu, S. Fermandjian, P. W. Yang, and H. H. Mantsch, “Investigation of adenylate kinase from Escherichia coli and its interaction with nucleotides by Fourier transform infrared spectroscopy cell,” Biochem. Cell. Biol., 67, 327–331 (1989).
- 9 W. H. Peter and H. H. Mantsch, “Structure of cytochrome b5 in solution by Fourier transform infrared spectroscopy,” Biochemistry, 28, 931–935 (1989).
- 10 W. J. Yang, P. K. Griffiths, D. M. Byler, and H. Susi, “Protein conformation by infrared spectroscopy: resolution enhancement by Fourier self-deconvolution” Appl. Spect., 39, 282–287 (1985).
- 11 H. H. Mantsch, “Biological application of Fourier transform infrared spectroscopy: a study of phase transition in Biomembranes,” J. Mol. Struct., 113, 201–212 (1984).
- 12
D. Naumann,
C. Schultz,
J. F. Born, and
H. Labischinski,
“Fourier transform infrared spectroscopy and X-ray diffraction, tools for probing lipolysac-charides and lipid A membranes from Gram-negative bacteria,”
Mikrochim. Acta.,
I, 379–383
(1988).
10.1007/BF01205911 Google Scholar
- 13 M. Mathlouti and J. L. Koenig, “Vibrational spectra of carbohydrates advances in carbohydrates chemistry and biochemistry,” Chem. Biochem., 44, 7–89 (1986).
- 14 J. M. Le Gal, M. Manfait, and T. Theophanides, “Application of FT-IR spectroscopy in structural studies of cells and bacteria,” J. Mol. Struct., 242, 397–407 (1991).
- 15 W. Zeroual, C. Choisy, M. S. Doglia, J. F. Angiboust, H. Bobichon, and M. Manfait, “Monitoring of bacteria growth and structural analysis as probed by FT-IR spectroscopy,” Biochim. Biophys. Acta., 1222, 171–178 (1994).
- 16 W. Zeroual, C. Choisy, and M. Manfait, “Application of FT-IR spectroscopy in ultra-structural studies of bacteria,” in Proc. 14th Ann. Inter. Conf. IEEE. Paris-France, 1, 78–79 (1992).
- 17 W. Zeroual, M. Manfait, and C. Choisy, “FT-IR spectroscopic study of perturbations induced by antibiotic on bacteria,” Pathol. Biol., 43, 300–305 (1995).
- 18 E. Benedetti, M. P. Palatresi, P. Vergamini, F. Papineschi, and G. Spremolla, “Analytical infrared spectra differences between human normal and leukeamic cells (cll)-I,” Leuk. Res., 9, 1001–1008 (1985).
- 19 E. Benedetti, F. Papineschi, P. Vergamini, R. Consolini, and G. Spremolla, “New possibilities of research in chronic lymphatic leukemia by means of Fourier transform infrared spectroscopy-II,” Leuk. Res., 8, 483–489 (1984).
- 20 B. Rigas, S. Morgello, I. S. Goldman, and P. T. T. Wong, “Human colorectal cancers display abnormal Fourier transform infrared spectra,” Proc. Natl. Acad. Sci. USA., 87, 8140–8144 (1990).
- 21 B. Rigas, and P. T. T. Wong, “Human colon adenocarcinoma cell lines display infrared spectroscopic features of malignant colon tissues,” Cancer Res., 52, 84–88 (1992).
- 22 I. Horbach, D. Naumann, and F. J. Fehrenbach, “Simultaneous infections with different serogroups of Legionella pneumophila investigated by routine methods and Fourier transform infraed spectroscopy,” J. Clin. Microbiol., 26, 1106–1110 (1988).
- 23 P. T. T. Wong, R. K. Wong, T. A. Caputo, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cell: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci., 88, 10988–10992 (1991).
- 24 H. L. Casal, U. Kuhler, and H. H. Mantsch, “Structural and conformational changes of lactoglobulin: an infrared spectroscopic study of the effect of pH and temperature,” Biochim. Biophys. Acta., 957, 11–20 (1988).
- 25 R. J. Jerrard and D. A. Pink, “Peak locater for multicomponent spectra,” Biophys. Acta, 966, 415–418 (1988).
- 26 W. C. Surewicz and H. H. Mantsch, “New insight into protein secondary structure from resolution-enhanced infrared spectra,” Biochim. Biophys. Acta, 952, 115–130 (1988).
- 27 D. Cameron and D. J. Moffat, “Deconvolution derivation and smoothing of spectra using Fourier transforms,” J. Test. Eval., 2, 78–85 (1984).
- 28 D. M. Byler and H. Susi “Examination of the secondary structure of proteins by deconvolved FT-IR spectra,” Biopolymers, 25, 469–487 (1986).
- 29 P. W. Yang and H. H. Mansch “Fourier transform infrared investigation of the Escherichai coli methionine aporepressor,” Biochemistry, 26, 2706–2711 (1987).
- 30 S. W. Jacob and R. Herschler, “Pharmacology of DMSO,” Cryobiology, 23, 14–27 (1986).
- 31 M. S. Braiman and K. J. Rothschild, “Fourier transform infrared techniques for probing membrane protein structure,” Biochim. Biophys. Acta., 17, 541–570 (1988).
- 32 B. S. Krimm, “Vibrational analysis of peptides, polypeptides and proteins: characteristic amide bands of turns,” Proc. Natl. Acad. Sci. USA., 76, 774–777 (1979).
- 33 H. Susi and D. M. Byler, “Fourier transform study of proteins with parallel chains,” Arch. Biochem. Biophys., 258, 465–469 (1987).
- 34 M. Jackson, H. H. Mantsh, and J. H. Spencer, “Conformation of magainin-2 related peptides in aqueous solution and membrane environments probed by Fourier transform infrared spectroscopy,” Biochemistry, 31, 7289–729357 (1992).
- 35 A. Dong, P. Huang, and W. Caughey, “Protein secondary structures in water from second-derivative amide I infrared spectra,” Biochemistry, 29, 3303–3308 (1990).
- 36 J. H. Crowe, L. M. Crowe, and D. Chapman, “Infrared spectroscopic studies on interactions of water and carbohydrates with a biological membrane,” Arch. Biochem. Biophys., 232, 400–407 (1984).
- 37 K. Gekko and S. N. Timasheff, “Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures,” Biochemistry, 20, 4667–4676 (1981).
- 38 J. Alvarez, P. L. Haris, D. C. Lee, and D. Chapman, “Conformational changes in concanavalin A associated with demetallization and a methylmannose binding studied by Fourier transform infrared spectroscopy,” Biochim. Biophys. Acta, 916, 5–12 (1988).
- 39 C. D. Jordan, Rhizobiacea family in Bergey's Manual of Systematic Bacteriology, ed. by N. R. Krieg and J. G. Holt, Williams & Wilkins Press, Baltimore (1984) pp. 234–235.
- 40 J. Terpinski, Identification of organic compounds, in Laser raman spectrometry, ed. by H. Baranska, A. Labudzinska and J. Terpinskiohn, Wiley, New York (1987) pp. 79–140.
- 41 T. T. Herskovits, B. Gadegbeku, and H. Jaillet, “On the structural stability and solvent denaturation of proteins, denaturation by the alcohols,” J. Biol. Chem., 245, 2588–2598 (1970).
- 42 G. M. Fahy, D. I. Levy, and S. E. Ali, “Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions,” Cryobiology, 24, 196–213 (1987).
- 43 R. Raether, R. Michel, and M. Uphof, “Effects of DMSO and the deep-freezing process on the infectivity, motility, and ultrastructure of trypanosoma cruzi,” Parasitol. Res., 74, 307–313 (1988).