DNA flexibility as a function of allomorphic conformation and of base sequence
Marc Poncin
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
Search for more papers by this authorDaniel Piazzola
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
Search for more papers by this authorRichard Lavery
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
Search for more papers by this authorMarc Poncin
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
Search for more papers by this authorDaniel Piazzola
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
Search for more papers by this authorRichard Lavery
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
Search for more papers by this authorAbstract
Systematic theoretical modeling of symmetric DNA oligomers, carried out earlier for the B conformation, is now extended to A-DNA. In contrast to the previous results, it is found that A-DNA shows no multiplicity of low-energy substate conformations. The possibilities of the Jumna algorithm are subsequently applied to studying deformations of the oligomers. Controlled winding and stretching deformations are used to study how the two allomorphs and different base sequences absorb such external stress. The results help explain the internal mechanics of the DNA double helix and the extent to which fine structure influences this behavior. The results point to some differences between the A and B double helices, but also to many similarities. Sequence effects on flexibility are relatively limited compared to their impact on optimal energy conformations. It is also shown that the conformational substates detected for B-DNA oligomers are preserved under deformation, but have little influence on its energetics. © 1992 John Wiley & Sons, Inc.
References
- 1 Calladine, C. R. (1982) J. Mol. Biol. 161, 343–352.
- 2 Yanagi, K., Privé, G. G. & Dickerson, R. E. (1991) J. Mol. Biol. 217, 201–214.
- 3 Lavery, R. (1986) in Structure and Expression, Vol. 3, DNA Bending and Curvature, W. K. Olson, R. H. Sarma, M. H. Sarma & M. Sundaralingam, Eds., Adenine Press, New York, 1986, pp. 191–211.
- 4 Ramstein, J. & Lavery, R. (1988) Proc. Natl. Acad. Sci. USA 85, 7231–7235.
- 5 Sun, J. S., Francois, J.-C., Lavery, R., Saison-Behmoaras, T., Montenay-Garestier, T., Thuong, N. T. & Hélène, C. (1988) ACS Biochem. 27, 6039–6045.
- 6 Hartmann, B., Malfoy, B. & Lavery, R. (1989) J. Mol. Biol. 207, 433–444.
- 7 Poncin, M., Hartmann, B. & Lavery, R. (1992) J. Mol. Biol., in press.
- 8 Grzeskowiak, K., Yanagi, K., Privé, G. G. & Dickerson, R. E. (1991) J. Biol. Chem. 266, 8861–8883.
- 9 Privé, G. G., Yanagi, K. & Dickerson, R. E. (1991) J. Mol. Biol. 217, 177–199.
- 10 Lavery, R., Sklenar, H., Zakrzewska, K. & Pullman, B. (1986) J. Biomol. Struct. Dynam. 3, 989–1014.
- 11 Lavery, R., Parker, I. & Kendrick, J. (1986) J. Biomol. Struct. Dynam. 4, 443–461.
- 12 Lavery, R., Zakrwewska, K. & Pullman, A. (1984) J. Comp. Chem. 5, 363–373.
- 13 Hingerty, B., Richie, R. H., Ferrel, T. L. & Turner, J. E. (1985) Biopolymers 24, 427–439.
- 14 Fritsch, V. & Westhof, E. (1990) in Modelling of Molecular Structures and Properties, J. L. Rivail, Ed., Elsevier, New York, pp. 627–634.
- 15 Jayaram, B., Swaminathan, S., Beveridge, D. L., Sharp, K. & Honig, B. (1990) Macromolecules 23, 3156–3165.
- 16 Arnott, S. & Hukins, D. W. L. (1973) J. Mol. Biol. 81, 93–105.
- 17 Arnott, S. & Hukins, D. W. L. (1972) Biochem. Biophys. Res. Comm. 47, 1504–1510.
- 18 Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. (1980) Nature 283, 743–745, and coordinates communicated to our laboratory by S. Arnott.
- 19 Dickerson, R. E., Bansal, M., Calladine, C. R., Diekmann, S., Hunter, W. N., Kennard, O., Lavery, R., Nelson, H. C. M., Olson, W. K., Saenger, W., Shakked, Z., Sklenar, H., Soumpasis, D. M., Tung, C.-S., von Kitzing, E., Wang, A. H.-J., & Zhurkin, V. B. (1989) J. Mol. Biol. 205, 787–791.
- 20 Lavery, R. & Sklenar, H. (1988) J. Biomol. Struct. Dyanm. 6, 63–91.
- 21 Lavery, R. & Sklenar, H. (1989) J. Biomol. Struct. Dynam. 6, 655–667.
- 22 Stofer, E. & Lavery, R. (1992) in preparation.
- 23
Pilet, J. &
Brahms, J.
(1972)
Nature New Biol.
236, 89–100.
10.1038/newbio236099a0 Google Scholar
- 24 McCall, M., Brown, T. & Kennard, O. (1985) J. Mol. Biol. 183, 385–396.
- 25 McCall, M., Brown, T., Hunter, W. N. & Kennard, O. (1986) Nature 322, 661–664.
- 26 Heinemann, U., Lauble, H., Frank, R. & Bloeker, H. (1987) Nucleic Acids Res. 15, 9531–9550.
- 27 Lauble, H., Frank, R., Bloeker, H. & Heinemann, U. (1988) Nucleic Acids Res. 16, 7799–7816.
- 28 Frederick, C. A., Quigley, G. J., Teng, M.-K., Coll, M., van der Marel, G. A., van Boom, J. H., Rich, A. & Wang, A. H.-J. (1989) Eur. J. Biochem. 181, 295–307.
- 29 Takusagawa, F. (1990) J. Biomol. Struct. Dynam. 7, 795–809.
- 30 Zhurkin, V. B., Lysov, Yu. P., Florentiev, V. L. & Iva-nov, V. I. (1982) Nucleic Acids Res. 10, 1811–1830.
- 31 Zhurkin, V. B., Gorin, A. A., Charakhchyan, A. A. & Ulyanov, N. B. (1990) in Theoretical Biochemistry and Molecular Biophysics, D. L. Beveridge & R. Lavery, Eds., Adenine Press, New York, pp. 411–431.
- 32 Millar, D. P., Robbins, R. J. & Zewail, A. H. (1982) J. Chem. Phys. 76, 2080–2094.
- 33 Lavery, R., Sklenar, H., Zakrzewska, K. & Pullman, B. (1986) J. Biomol. Struct. Dynam. 3, 989–1014.
- 34 Sarai, A., Mazur, J., Nussinov, R. & Jernigan, R. L. (1989) Biochemistry 28, 7842–7849.
- 35 Leroy, J.-L., Charretier, E., Kochoyan, M. & Guéron, M. (1988) Biochemistry 27, 8894–8898.
- 36 Zakrzewska, K. (1992) J. Biomol. Struct. Dynam. 9, 681–690.
- 37 Hard, T., Fan, P., Magde, D. & Kearns, D. R. (1989) J. Phys. Chem. 93, 4338–4345.
- 38 Hogan, M., LeGrange, J. & Austin, R. H. (1983) Nature 304, 752–754.
- 39 Shakked, Z. & Rabinovich, D. (1986) Prog. Biophys. Mol. Biol. 47, 159–195.