The neutral theory is dead. Long live the neutral theory
Martin Kreitman
Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL 60637, USA.
Search for more papers by this authorMartin Kreitman
Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL 60637, USA.
Search for more papers by this authorAbstract
The neutral theory of molecular evolution has been instrumental in organizing our thinking about the nature of evolutionary forces shaping variation at the DNA level. More importantly, it has provided empiricists with a strong set of testable predictions and hence, a useful null hypothesis against which to test for the presence of selection. Evidence indicates that the neutral theory cannot explain key features of protein evolution nor patterns of biased codon usage in certain species. Whereas we now have a reasonable model of selection acting on synonymous changes in Drosophila, protein evolution remains poorly understood. Despite limitations in the applicability of the neutral theory, it is likely to remain an integral part of the quest to understand molecular evolution.
References
- 1 Ohta, T. (1976). Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor. Pop. Biol. 10, 254–275.
- 2 Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Sys. 23, 263–286.
- 3
Gillespie, J. H.
(1994).
Alternatives to the neutral theory.
In Non-Neutral Evolution
(ed.
B. Golding),
pp. 1–17.
Chapman & Hall, New York.
10.1007/978-1-4615-2383-3_1 Google Scholar
- 4
Kimura, M.
(1983).
The Neutral Theory of Evolution.
Cambridge University Press, Cambridge.
10.1017/CBO9780511623486 Google Scholar
- 5 Kimura, M. (1986). DNA and the neutral theory. Phil. Trans. Royal Soc. Lond. B 312, 343–354.
- 6
Kreitman, M. and
Wayne, M.
(1994).
Organization of genetic variation at the molecular level: lessons from Drosphila.
In Molecular Ecology and Evolution: Approaches and Applications
(ed.
B. Schierwater,
B. Streit,
G. P. Wagner and
R. DeSalle),
pp. 157–184.
Birkhäuser Verlag, Basel.
10.1007/978-3-0348-7527-1_9 Google Scholar
- 7 Sharp, P. M. and Li, W.-H. (1989). On the rate of DNA sequence evolution in Drosophila. J. Mol. Evol. 28, 1312–1316.
- 8 Martinez-Cruzado, J. C. (1990). Evolution of the autosomal chorion cluster in Drosophila. IV. The Hawaiian Drosophila: rapid protein evolution and constancy in the rate of DNA divergence. J. Mol. Evol. 31, 402–423.
- 9 Akashi, H. (1995). Inferring weak selection from patterns of polymorphism and divergence at ‘silent’ sites in Drosophila DNA. Genetics 139, 1067–1076.
- 10 Akashi, H. (1994). Synonymous codon usage in Drosohila melanogaster. natural selection and translational accuracy. Genetics 136, 927–935.
- 11 Sawyer, S. A. and Hartl, D. L. (1992). Population genetics of polymorphism and divergence. Genetics 132, 1161–1176.
- 12 Li, W.-H. (1987). Models of nearly neutral mutations with particular implications for non-random usage of synonymous codons. J. Mol. Evol. 24, 337–345.
- 13 Gillespie, J. H. (1991). The Causes of Molecular Evolution. Oxford University Press, New York.
- 14 Kreitman, M. and Akashi, H. (1995). Molecular evidence for natural selection. Annu. Rev. Ecol. Syst. 26, 403–422.
- 15 Li, W.-H. and Wu, C.-I. (1987). Rates of nucleotide substitution are evidently higher in rodents than in man. Mol. Bio. Evol. 4, 74–77.
- 16 Ohta, T. (1987). Very slightly deleterious mutations and the molecular clock. J. Mol. Evol. 26, 1–6.
- 17 Ohta, T. (1991). Multigene families and the evolution of complexity. J. Mol. Evol. 33, 34–41.
- 18 Ohta, T. (1994). Further examples of evolution by gene duplication revealed through DNA sequence comparisons. Genetics 138, 1331–1337.
- 19 Li, W.-H. (1985). Accelerated evolution following gene duplication and its implication for theneutralist-selectionist controversy. In Population Genetics and Molecular Evolution (ed. T. Ohta and K. Aoki), pp. 333–352. Japan Sci. Soc. Press, Tokyo.
- 20 Long, M. and Langley, C. H. (1993). Natural selection and the origin of jingwei, a processed functional gene in Drosophila. Science 260, 91–95.
- 21 Lee, Y.-H., Ota, T. and Vacquier, V. D. (1995). Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol. Biol. Evol. 12, 213–238.
- 22 McDonald, J. H. and Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654.
- 23 Eanes, W. F., Kirchner, M. and Yoon, J. (1993). Evidence for adaptive evolution of the G6PD gene in the Drosophila melanogaster and D. simulans lineages. Proc. Natl Acad. Sci. USA 90, 7475–7479.
- 24 Nachman, M. W., Brown, W. M., Stoneking, M. and Aquadro, C. F. (1996). Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142, 953–963.
- 25 Lewontin, R. C. (1985). Population Genetics. Annu. Rev. Genet. 19, 81–102.
- 26 Watterson, G. A. (1982). Mutant substitutions at linked nucleotide sites. Adv. Appl. Prob. 14, 206–224.
- 27 Kaplan, N. L., Darden, T. and Hudson, R. R. (1988). The coalescent process in models with selection. Genetics 120, 819–829.
- 28 Hudson, R. R., Kreitman, M. and Aguadé, M. (1987). A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159.
- 29 Langley, C. H., Voelker, R. A., Leigh Brown, A. J., Ohnishi, S., Dickson, B. and Montgomery, E. (1981). Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster Genetics 99, 151–156.
- 30 Voelker, R. A. et al. (1980). Enzyme null alleles in natural populations of Drosophila melanogaster. Frequencies in a North Carolina population. Proc. Natl Acad. Sci. USA 82, 479–482.
- 31 Sawyer, S. A., Dykhuizen,D. E. and Hartl, D. L. (1987). Confidence interval for the number of selectively neutral amino acid polymorphisms. Proc. Natl Acad. Sci. USA 84, 6225–6228.
- 32 Watt, W. B., Cassin,R. C. and Swam, M. S. (1983). Adaptation at specific loci. III. Field behavior and survivorship differences among Colias PGI genotypes are predictable from in vitro biochemistry. Genetics 103, 725–739.
- 33 Ffrench-Constant, R. H. (1994). The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem. Mol. Biol. 24, 335–345
- 34 Kaplan, N. L., Hudson,R. R. and Langley, C. H. (1989). The hitchhiking effect revisited. Genetics 123, 887–899.
- 35 Wiehe, T. H. E. and Stephan, W. (1993). Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster. Mol. Biol. Evol. 10, 842–854.
- 36 Charlesworth, B., Morgan,M. T. and Charlesworth, D. (1993). The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303.
- 37 Hudson, R. R. and Kaplan, N. L. (1995). Deleterious background selection with recombination. Genetics 141, 1605–1617.
- 38 Braverman, J. M., Hudson, R. R., Kaplan, N. L., Langley,C. H. and Stephan, W. (1995). The hitchhiking effect on the site frequency spectrum of DNA polymorphism. Genetics 140, 783–795.
- 39 Simonsen, K. L., Churchill,G. A. and Aquadro, C. F. (1995). Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141, 413–429.
- 40 Hudson, R. R. (1992). Gene genealogies and the coalescent process. In Oxford Series in Ecology and Evolution, vol. 7 (ed. D. Futuyma and J. Antonovics), pp. 1–44. Oxford University Press, Oxford.