Molecular mechanisms involved in Ras inactivation: the annexin A6–p120GAP complex
Corresponding Author
Thomas Grewal
Centre for Immunology, St. Vincent's Hospital, University of New South Wales, Sydney, Australia.
Centre for Immunology, St. Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia.Search for more papers by this authorCarlos Enrich
Departament de Biologia Celluar, Institut d'Investigacions de Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
Search for more papers by this authorCorresponding Author
Thomas Grewal
Centre for Immunology, St. Vincent's Hospital, University of New South Wales, Sydney, Australia.
Centre for Immunology, St. Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia.Search for more papers by this authorCarlos Enrich
Departament de Biologia Celluar, Institut d'Investigacions de Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
Search for more papers by this authorAbstract
In mammalian cells, a complex network of signaling pathways tightly regulates a variety of cellular processes, such as proliferation and differentiation. New insights from one of the most-important signaling cascades involved in oncogenesis, the Ras–Raf–MAPK pathway, suggest that the subcellular localisation and assembly of signaling modules of this pathway is crucial to control the biological response. This commonly requires membrane targeting events that are mediated by adaptor/scaffold proteins. Of particular interest is the translocation and complex formation of GTPase-activating proteins (GAPs), such as p120GAP, at the plasma membrane to inactivate Ras. Recent studies indicate that one member of the annexin family, annexin A6 acts as a targeting protein for p120GAP. This review discusses how annexin A6 modulates the involvement of negative regulators of the Ras–Raf–MAPK pathway contributing to Ras inactivation. BioEssays 28: 1211–1220, 2006. © 2006 Wiley Periodicals, Inc.
References
- 1 Hancock JF. 2003. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4: 373–384.
- 2 Dhillon AS, Kolch W. 2002. Untying the regulation of the Raf-1 kinase. Arch Biochim Biophys 404: 3–9.
- 3 Raabe T, Rapp UR. 2003. Ras signaling: PP2A puts Ksr and Raf in the right place. Curr Biol 13: R635–R637.
- 4 Hancock JF, Parton RG. 2005. Ras plasma membrane signalling platforms. Biochem J 389: 1–11.
- 5 Grewal T, Tebar F, Pol A, Enrich C. 2006. Involvement of targeting and scaffolding proteins in the regulation of the EGFR/Ras/MAPK pathway in oncogenesis. Curr Signal Trans Ther 1: 147–167.
- 6 Schlessinger J. 2000. Cell signalling by receptor tyrosine kinases. Cell 103: 211–225.
- 7 Downward J. 2003. Targeting ras signalling pathways in cancer therapy. Nat Rev Cancer 3: 11–22.
- 8 Wellbrock C, Karasarides M, Marais R. 2004. The Raf proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.
- 9 Gerke V, Moss SE. 2002. Annexins: from structure to function. Physiol Rev 82: 331–371.
- 10 Gerke V, Creutz CE, Moss SE. 2005. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6: 449–461.
- 11 Grewal T, Heeren J, Mewawala D, Schnitgerhans T, Wendt D, et al. 2000. Annexin VI stimulates endocytosis and is involved in the trafficking of low density lipoprotein to the prelysosomal compartment. J Biol Chem 275: 33806–33813.
- 12 Pons M, Grewal T, Rius E, Schnitgerhans T, Jaeckle S, et al. 2001. Evidence for the involvement of annexin 6 in the trafficking between the endocytic compartment and lysosomes. Exp Cell Res 269: 13–22.
- 13 de Diego I, Schwartz F, Siegfried H, Dauterstedt P, Heeren J et al. 2002. Cholesterol modulates the membrane binding and intracellular distribution of annexin 6. J Biol Chem 277: 32187–32194.
- 14 Grewal T, Evans R, Rentero C, Tebar F, Cubells L, et al. 2005. Annexin A6 stimulates the membrane recruitment of p120GAP to modulate Ras and Raf-1 activity. Oncogene 24: 5809–5820.
- 15 Rentero C, Evans R, Wood P, Tebar F, Vilà de Muga S et al. 2006. Inhibition of H-Ras and MAPK is compensated by PKC-dependent pathways in annexin A6 expressing cells. Cell Signal 18: 1006–1016.
- 16 Davis AJ, Butt, JT, Walker JH, Moss SE, Gawler DJ. 1996. The Ca2+-dependent lipid binding domain of p120GAP mediates protein-protein interactions with Ca2+-dependent membrane-binding proteins. Evidence for a direct interaction between annexin 6 and p120GAP. J Biol Chem 271: 24333–24336.
- 17 Chow A, Gawler DJ. 1999. Mapping the site of interaction between annexin VI and the p120GAP C2 domain. FEBS Lett 460: 166–172.
- 18 Schmitz-Peiffer C, Browne CL, Walker JH, Biden TJ. 1998. Activated protein kinase C alpha associates with annexin VI from skeletal muscle. Biochem J 330: 675–681.
- 19 Orito A, Kumanogoh H, Yasaka K, Sokawa J, Hidaka H et al. 2001. Calcium-dependent association of annexin VI, protein kinase C alpha, and neurocalcin alpha on the raft fraction derived from the synaptic plasma membrane of rat brain. J Neurosci Res 64: 235–241.
- 20 Cullen PJ, Lockyer PJ. 2002. Integration of calcium and ras signalling. Nat Rev Mol Cell Biol 3: 339–348.
- 21 Quilliam LA, Rebhun JF, Castro AF. 2002. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol 71: 391–444.
- 22 Donovan S, Shannon KM, Bollag G. 2001. GTPase activating proteins: critical regulators of intracellular signalling. Biochim Biophys Acta 87510: 1–23.
- 23 Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N et al. 2001. Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21: 1444–1452.
- 24 Matallanas D, Sanz-Moreno V, Arozarena I, Calvo F, Agudo-Ibanez L et al. 2006. Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation. Mol Cell Biol 26: 100–116.
- 25 Plowman SJ, Hancock JF. 2005. Ras signaling from plasma membrane and endomembrane microdomains. Biochim Biophys Acta. 1746: 274–283.
- 26 Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C et al. 2004. Single molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA 101: 7317–7322.
- 27 Walker SA, Cullen PJ, Taylor JA, Lockyer PJ. 2003. Control of Ras cycling by Ca2+. FEBS Lett 546: 6–10.
- 28 Ahmadian MR, Hoffmann U, Goody RS, Wittinghofer A. 1997. Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry 36: 4535–4541.
- 29 Dasgupta B, Gutmann DH. 2003. Neurofibromatosis 1: closing the GAP between mice and men. Curr Opin Gen Dev 13: 20–27.
- 30 Boon LM, Mulliken JB, Vikkula M. 2005. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr Opin Genet Dev 15: 265–269.
- 31 Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC et al. 2005. A genetic screen for candidate tumor suppressors identifies REST. Cell 121: 837–848.
- 32 Kolfschoten IG, van Leeuwen B, Berns K, Mullenders J, Beijersbergen RL et al. 2005. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121: 849–858.
- 33 Ahmadian MR, Kiel C, Stege P, Scheffzek K. 2003. Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J Mol Biol 329: 699–710.
- 34 D'Angelo I, Welti S, Bonneau F, Scheffzek K. 2006. A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep 7: 174–179.
- 35 Lockyer PJ, Bottomley JR, Reynolds JS, McNulty TJ, Venkateswarlu K et al. 1997. Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting. Curr Biol 7: 1007–1010.
- 36 Lockyer PJ, Wennstroem S, Kupzig S, Venkateswarlu K, Downward J et al. 1999. Identification of the ras GTPase-activating protein GAP1(m) as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo. Curr Biol 9: 265–268.
- 37 Cozier GE, Lockyer PJ, Reynolds JS, Kupzig S, Bottomley JR et al. 2000. GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem 275: 28261–28268.
- 38 Koehler JA, Moran MF. 2001. Regulation of extracellular signal-regulated kinase activity by p120 RasGAP does not involve its pleckstrin homology or calcium-dependent lipid binding domains but does require these domains to regulate cell proliferation. Cell Growth Differ 12: 551–561.
- 39 Koehler JA, Moran MF. 2001. RACK1, a protein kinase C scaffolding protein, interacts with the PH domain of p120GAP. Biochem Biophys Res Commun 283: 888–895.
- 40 Cooper JA, Kashishian A. 1993. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase. Mol Cell Biol 3: 1737–1745.
- 41 Kazlauskas A, Ellis C, Pawson T, Cooper JA. 1990. Binding of GAP to activated PDGF receptors. Science 247: 1578–1581.
- 42 Jones RB, Gordus A, Krall JA, MacBeath G. 2006. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439: 168–174.
- 43 Wang Z, Tung PS, Moran MF. 1996. Association of p120 ras GAP with endocytic components and colocalization with epidermal growth factor (EGF) receptor in response to EGF stimulation. Cell Growth Differ 7: 123–133.
- 44 Cook SJ, Lockyer PJ. 2006. Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. Cell Calcium 39: 101–112.
- 45 Cullen PJ. 2006. Decoding complex Ca2+ signals through the modulation of Ras signaling. Curr Opin Cell Biol 18: 157–161.
- 46 Lockyer PJ, Kupzig S, Cullen PJ. 2001. CAPRI regulates Ca(2+)-dependent inactivation of the Ras-MAPK pathway. Curr Biol 11: 981–986.
- 47 Walker SA, Kupzig S, Bouyoucef D, Davies LC, Tsuboi T. 2004. Identification of a Ras GTPase-activating protein regulated by receptor-mediated Ca2+-oscillations. EMBO J 23: 1749–1760.
- 48 Lio Q, Walker SA, Gao DC, Taylor JA, Dai YF et al. 2005. CAPRI and RASAL impose different modes of information processing on Ras due to contrasting temporal filtering of Ca2+. J Cell Biol 170: 183–190.
- 49 Zhang J, Guo J, Dzhagalov I, He Y-W. 2005. An essential function for the Ca2+-promoted Ras activator in Fcγ-receptor-mediated phagocytosis. Nat Immunol 6: 911–919.
- 50 Briggs MW, Sacks DB. 2003. IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep 4: 571–574.
- 51 Kupzig S, Deaconescu D, Bouyoucef D, Walker SA, Liu Q et al. 2006. GAP1 family members constitute bifunctional Ras and Rap GTPase-activating proteins. J Biol Chem 281: 9891–9900.
- 52 Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK et al. 2003. Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424: 694–698.
- 53 Gawler DJ, Zhang LJ, Reedijk M, Tung PS, Moran MF. 1995. CaLB: a 43 amino acid calcium-dependent membrane/phospholipid binding domain in p120 Ras GTPase-activating protein. Oncogene 10: 817–825.
- 54 Gawler DJ, Zhang LJ, Moran MF. 1995. Mutation-deletion analysis of a Ca(2+)-dependent phospholipid binding (CaLB) domain within p120 GAP, a GTPase-activating protein for p21 ras. Biochem J 307: 487–491.
- 55 Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A et al. 2005. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437: 1173–1178.
- 56 Theobald J, Smith PD, Jacob SM, Moss SE. 1994. Expression of annexin VI in A431 carcinoma cells suppresses proliferation: a possible role for annexin VI in cell growth regulation. Biochim Biophys Acta 1223: 383–390.
- 57 Kupzig S, Walker SA, Cullen PJ. 2005. The frequencies of calcium oscillations are optimised for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. Proc Natl Acad Sci USA 102: 7577–7582.
- 58 Chow A, Davis AJ, Gawler DJ. 1999. Investigating the role played by protein-lipid and protein-protein interactions in the membrane association of the p120GAP CaLB domain. Cell Signal 11: 443–451.
- 59 Pons M, Tebar F, Kirchhoff M, Peiró S, de Diego I, et al. 2001. Activation of Raf-1 is defective in annexin 6 overexpressing Chinese hamster ovary cells. FEBS Lett 501: 69–73.
- 60 Clark JD, Schievella AR, Nalefski EA, Lin LL. 1995. Cytosolic phospholipase A2. J Lipid Mediat Cell Signal 12: 83–117.
- 61 Massey-Harroche D, Mayran N, Maroux S. 1998. Polarized localizations of annexins I, II, VI and XIII in epithelial cells of intestinal, hepatic and pancreatic tissues. J Cell Sci 111: 3007–3015.
- 62 Markoff A, Gerke V. 2005. Expression and functions of annexins in kidney. Am J Physiol Renal Physiol 289: 949–956.
- 63 Koivunen J, Aaltonen V, Peltonen J. 2006. Protein kinase C (PKC) family in cancer progression. Cancer Letters 235: 1–10.
- 64 Marais R, Light Y, Mason C, Paterson H, Olson MF et al. 1998. Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 280: 109–112.
- 65 Downward J, Graves JD, Warne PH, Rayter S, Cantrell DA. 1990. Stimulation of p21ras upon T-cell activation. Nature 346, 719–723.
- 66 Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H et al. 1993. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364: 249–252.
- 67 Carroll MP, May WS. 1994. Protein kinase C-mediated serine phosphorylation directly activates Raf-1 in murine hematopoietic cells. J Biol Chem 269: 1249–1256.
- 68 Lund KA, Lazar CS, Chen WS, Walsh BJ, Welsh JB et al. 1990. Phosphorylation of the epidermal growth factor receptor at threonine 654 inhibits ligand-induced internalization and down-regulation. J Biol Chem 265: 20517–20523.
- 69 Bao J, Alroy I, Waterman H, Schejter ED, Brodie CH et al. 2000. Threonine phosphorylation diverts internalized epidermal growth factor receptors from a degradative pathway to the recycling endosome. J Biol Chem 275: 26178–26186.
- 70 Lladó A, Tebar F, Calvo M, Moretó J, Sorkin A et al. 2004. Protein kinase Cdelta-calmodulin crosstalk regulates epidermal growth factor receptor exit from early endosomes. Mol Biol Cell 15: 4877–4891.
- 71 Schechtman D, Mochly-Rosen D. 2001. Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20: 6339–6347.
- 72 Assanasen C, Mineo C, Seetharam D, Yuhanna IS, Marcel YL et al. 2005. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor–BI mediate HDL-initiated signaling. J Clin Invest 115: 969–977.
- 73 Buitrago CG, Pardo VG, de Boland AR, Boland R. 2003. Activation of RAF-1 through Ras and protein kinase Calpha mediates 1alpha,25(OH)2-vitamin D3 regulation of the mitogen-activated protein kinase pathway in muscle cells. J Biol Chem 278: 2199–2205.
- 74 Soh JW, Lee EH, Prywes R, Weinstein IB. 1999. Novel roles of specific isoforms of protein kinase C in activation of the c-fos serum response element. Mol Cell Biol 19: 1313–1324.
- 75 Grewal T, Tebar F, Pol A, Enrich C. 2004. Annexin A6 and its role in Ras signaling. Annexins 1: 62–67.
- 76 White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. 2006. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J 25: 1–12.
- 77 Radke S, Austermann J, Russo-Marie F, Gerke V, Rescher U. 2004. Specific association of annexin 1 with plasma membrane-resident and internalized EGF receptors mediated through the protein core domain. FEBS Lett 578: 95–98.
- 78 Liu JW, Shen JJ, Tanzillo-Swarts A, Bhatia B, Maldonado CM et al. 2003. Annexin II expression is reduced or lost in prostate cancer cells and its re-expression inhibits prostate cancer cell migration. Oncogene 22: 1475–1485.
- 79 Srivastava M, Bubendorf L, Srikantan V, Fossom L, Nolan L et al. 2001. ANX7, a candidate tumor suppressor gene for prostate cancer. Proc Natl Acad Sci USA 98: 4575–4580.
- 80 Francia G, Mitchell SD, Moss SE, Hanby AM, Marshall JF et al. 1996. Identification by differential display of annexin-VI, a gene differentially expressed during melanoma progression. Cancer Res 56: 3855–3858.
- 81 Hosooka T, Noguchi T, Nagai H, Horikawa T, Matozaki T et al. 2001. Inhibition of the motility and growth of B16F10 mouse melanoma cells by dominant negative mutants of Dok-1. Mol Cell Biol 21: 5437–5446.
- 82 Barel M, Gauffre A, Lyamani F, Fiandino A, Hermann J et al. 1991. Binding sites of the Epstein-Barr virus and C3d receptor (CR2, CD21) for its three intracellular ligands, the p53 anti-oncoprotein, the p68 calcium binding protein and the nuclear p120 ribonucleoprotein. J Immunol 147: 1286–1291.
- 83
Lorenzo GD,
Bianco R,
Tortora G,
Ciardiello F.
2003.
Involvement of growth factor receptors of the epidermal growth factor receptor family in prostate cancer development and progression to androgen independence.
Clin Prostate Cancer
1:
50–57.
10.3816/CGC.2003.n.013 Google Scholar
- 84 Weber MJ, Gioeli D. 2004. Ras signaling in prostate cancer progression. J Cell Biochem 91: 13–25.
- 85 Theobald J, Hanby A, Patel K, Moss SE. 1995. Annexin VI has tumour-suppressor activity in human A431 squamous epithelial carcinoma cells. Br J Cancer 71: 786–788.
- 86 Fleet A, Ashworth R, Kubista H, Edwards H, Bolsover S et al. 1999. Inhibition of EGF-dependent calcium influx by annexin VI is splice form-specific. Biochem Biophys Res Commun 260: 540–546.
- 87 Hawkins TE, Roes J, Rees D, Monkhouse J, Moss SE. 1999. Immunological development and cardiovascular function are normal in annexin VI null mutant mice. Mol Cell Biol 19: 8028–8032.
- 88 van der Geer P, Henkemeyer M, Jacks T, Pawson T. 1997. Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap. Mol Cell Biol 17: 1840–1847.
- 89 Ling Q, Jacovina AT, Deora D, Febbraio M, Simantov R et al. 2004. Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Cell Invest 113: 38–48.
- 90 Herr C, Smyth N, Ullrich S, Yun F, Sasse P et al. 2001. Loss of annexin A7 leads to alterations in frequency-induced shortening of isolated murine cardiomyocytes. Mol Cell Biol 21: 4119–4128.
- 91 Babiychuk EB, Draeger A. 2000. Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J Cell Biol 150: 1113–1123.
- 92 Schnitzer JE, Liu J, Oh P. 1995. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 270: 14399–14404.
- 93 Okamoto T, Schlegel A, Scherer PE, Lisanti MP. 1998. Caveolins, a family of scaffolding proteins for organizing ‘preassembled signalling complexes’ at the plasma membrane. J Biol Chem 273: 5419–5422.
- 94 Helms JB, Zurzolo C. 2004. Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5: 247–254.
- 95 Dubois T, Soula M, Moss SE, Russo-Marie F, Rothhut B. 1995. Potential interaction between annexin VI and a 56-kDa protein kinase in T cells. Biochem Biophys Res Commun 212: 270–278.
- 96 Chow A, Davis AJ, Gawler DJ. 2000. Identification of a novel protein complex containing annexin VI, fyn, pyk2, and the p120GAP C2 domain. FEBS Lett 469: 88–92.
- 97 Sorkin A, von Zastrow M. 2002. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3: 600–614.
- 98 Villalonga P, Lopez-Alcala C, Bosch M, Chiloeches A, Rocamora N et al. 2001. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling. Mol Cell Biol 21: 7345–7354.
- 99 Agell A, Bachs O, Rocamora N, Villalonga P. 2002. Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and Calmodulin. Cell Signal 14: 649–654.
- 100 Villalonga P, Lopez-Alcala C, Chiloeches A, Gil J, Marais R et al. 2002. Calmodulin prevents activation of Ras by PKC in 3T3 fibroblasts. J Biol Chem 277: 37929–37935.