The blood/vascular system in a phylogenetic perspective
Corresponding Author
Volker Hartenstein
Department of Molecular, Cell and Developmental Biology University of California Los Angeles, CA.
Department of Molecular, Cell and Developmental Biology, UC Los Angeles, Los Angeles CA 90095.Search for more papers by this authorLolitika Mandal
Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
Search for more papers by this authorCorresponding Author
Volker Hartenstein
Department of Molecular, Cell and Developmental Biology University of California Los Angeles, CA.
Department of Molecular, Cell and Developmental Biology, UC Los Angeles, Los Angeles CA 90095.Search for more papers by this authorLolitika Mandal
Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
Search for more papers by this authorAbstract
The genetically and experimentally accessible organs of Drosophila, such as the heart or blood-forming tissues, have become a fertile ground for systematic projects of gene discovery and for functional studies of gene networks and signaling pathways. One argument justifying this approach is the often-tacit assumption that clear-cut homologies can be established between the Drosophila organs and their vertebrate counterparts. Here we investigate this assumption by surveying pertinent aspects of vascular structure and development in different invertebrate phyla, in the hope that this information will help to reveal the ancestral condition of the vascular system. Evolutionary scenarios that derive the structure of the cardiovascular system of extant animal taxa from the ancestral condition will be used to qualify hypotheses regarding homologies that are based on molecular similarities. BioEssays 28: 1203–1210, 2006. © 2006 Wiley Periodicals, Inc.
References
- 1 Harvey RP. 1996. NK-2 homeobox genes and heart development. Dev Biol 178: 203–216.
- 2
Bodmer R,
Venkatesh TV.
1998.
Heart development in Drosophila and vertebrates: conservation of molecular mechanisms.
Dev Genet
22:
181–186.
10.1002/(SICI)1520-6408(1998)22:3<181::AID-DVG1>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 3 Evans SM. 1999. Vertebrate Tinman homologues and cardiac differentiation. Semin Cell Dev Biol 10: 73–83.
- 4 Ruppert EE, Carle KJ. 1983. Morphology of metazoan circulatory systems. Zoomorphology 103: 193–208.
- 5 Ratcliffe NA, Rowley AF. 1981. Invertebrate Blood Cells. London New York: Academic Press.
- 6
Murray PDF.
1932.
The development in vitro of the blood of the early chick embryo.
Proc R Soc Lond B
11:
497–521.
10.1098/rspb.1932.0070 Google Scholar
- 7 Choi K, et al. 1998. A common precursor for hematopoietic and endothelial cells. Development 125: 725–732.
- 8 Seifert G. 1979. Considerations about the evolution of excretory organs in terrestrial arthropods. In: M Camatini, editor. Myriapod Biology. Academic Press, pp. 353–372.
- 9
Ruppert E,
Smith PR.
1988.
The functional organization of filtration nephridia.
Biol Rev
63:
231–258.
10.1111/j.1469-185X.1988.tb00631.x Google Scholar
- 10 Crossley AC. 1985. Nephrocytes and pericardial cells. In: GA Kerkut, LI Gilbert, editors. Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Vol. 3. Oxford: Pergamon.
- 11
Willmer P.
1990.
Invertebrate Relationships.
University Press:
Cambridge.
10.1017/CBO9780511623547 Google Scholar
- 12 Ehlers U. 1985. Das phylogenetische System der Plathelminthes. New York: Gustav Fischer Verlag Stuttgart.
- 13 Rieger RM, Tyler S, Smith III JPS, Rieger GE. 1991. Platyhelminthes: Turbellaria. In: FW Harrison, BJ Bogitsh, editors. Microscopic anatomy of invertebrates. Vol. 3. New York: Wiley-Liss.
- 14 Ruppert EE, Carle KJ. 1983. Morphology of metazoan circulatory systems. Zoomorphology 103: 193–208.
- 15 Nakao T. 1974. An electron microscopic study of the circulatory system in Nereis japonica. J Morphol 144: 217–236.
- 16 Smith PR. 1986. Development of the blood vascular system in Sabellaria cementarium (Annelida, Polychaeta): An ultrastructural investigation. Zoomorphology 106: 67–74.
- 17 Gardiner SL. 1992. Polychaeta: General organization, integument, musculature, Coelom, and vascular system. In: FW Harrison, SL Gardiner, editors. Microscopic anatomy of invertebrates. Vol. 7. New York: Wiley-Liss.
- 18 Jensen H. 1974. Ultrastructural studies of the hearts in Arenicola marina L. (Annelida: Polychaeta). Cell Tiss Res 156: 127–144.
- 19
Ruppert E,
Smith PR.
1988.
The functional organization of filtration nephridia.
Biol Rev
63:
231–258.
10.1111/j.1469-185X.1988.tb00631.x Google Scholar
- 20 Smith PR. 1992. Polychaeta: Excretory system. In: FW Harrison, SL Gardiner, editors. Microscopic anatomy of invertebrates. Vol. 7. New York: Wiley-Liss.
- 21 Cuenot L. 1891. Etudes sur le sang et les glands lymphatiques dans la serie animale. Partie 2, Invertebres. Arch Zool Ser 2, T9: 613–641.
- 22
Kindred JE.
1922.
The leucocytes and leucocytopoietic organs of an oligochaete, Pheretima indica (Horst).
J Morph Physiol
47:
435–478.
10.1002/jmor.1050470205 Google Scholar
- 23 Eckelbarger KJ. 1976. Origin and development of the amoebocytes of Nicolea zostericola (Polychaeta Terebellidae) with a discussion of their possible role in oogenesis. Marine Biology 36: 169–182.
- 24 Ratcliffe NA, Rowley AF. 1981. Invertebrate Blood Cells. London New York: Academic Press.
- 25 Westheide W, Rieger R. 1996. Spezielle Zoolgie. New York. Gustav Fischer Verlag. Stuttgart Jena..
- 26 Rugendorff AE, Younossi-Hartenstein A, Hartenstein V. 1993. Embryonic development of the Drosophila heart. Roux's Arch Dev Biol 203: 266–280.
- 27 Hartenstein AY, Rugendorff AE, Tepass U, Hartenstein V. 1992. The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 116: 1203–1220.
- 28 Mandal L, Banerjee U, Hartenstein V. 2004. Evidence for a hemangioblast and similarities between lymph gland hematopoiesis in Drosophila and mammalian AGM. Nat Gen 36: 1019–1023.
- 29 Alvarez AD, Shi W, Wilson BA, Skeath JB. 2003. Pannier and PointedP2 act sequentially to regulate Drosophila heart development. Development 130: 3015–3026.
- 30 Ruppert E. 1997. Cephalochordata (Acrania). In: FW Harrison, EE Ruppert, editors. Microscopic anatomy of invertebrates. Vol. 15. New York: Wiley-Liss.
- 31 Burighel P, Cloney RA. 1991. Urochordata: Ascidiacea. In: FW Harrison, EE Ruppert, editors. Microscopic anatomy of invertebrates. Vol. 15. New York: Wiley-Liss.
- 32
Al-Adhami MA,
Kunz YW.
1977.
Ontogenesis of haematopoietic sites in Brachydanio rerio (Hamilton-Buchanan) (Teleostei).
Dev Growth Diff
19:
171–179.
10.1111/j.1440-169X.1977.00171.x Google Scholar
- 33 Coffin JD, Poole TJ. 1988. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102: 735–748.
- 34 Medvinsky AL, Samoylina NL, Muller AM, Dzierzak EA. 1993. An early pre-liver intra-embryonic source of CFUs in the developing mouse. Nature 364: 64–67.
- 35 Zon LI. 1995. Developmental biology of hematopoiesis. Blood 86: 2876–2891.
- 36
Cleaver O,
Tonissen KF,
Saha MS,
Krieg PA.
1997.
Neovascularization of the Xenopus embryo.
Dev Dyn
210:
66–77.
10.1002/(SICI)1097-0177(199709)210:1<66::AID-AJA7>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 37 Cleaver O, Krieg PA. 1998. VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 125: 3905–3914.
- 38 Eichmann A, Corbel C, Le Douarin NM. 1998. Segregation of the embryonic vascular and hematopoietic systems. Biochem Cell Biol 76: 939–946.
- 39 Gering M, Rodaway ARF, Gottgens B, Patient RK, Green AR. 1998. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J 15: 4029–4045.
- 40
Weinstein BM.
1999.
What guides early embryonic blood vessel formation?
Dev Dyn
215:
2–11.
10.1002/(SICI)1097-0177(199905)215:1<2::AID-DVDY2>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 41 Crosier PS, et al. 2002. Pathways in blood and vessel development revealed through zebrafish genetics. Int J Dev Biol 46: 493–502.
- 42 Hungerford JE, Owens GK, Argraves WS, Little CD. 1996. Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev Biol 178: 375–392.
- 43 Hellstroem M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. 1999. Role of PDGF-B and PDGFR-b in recruitment of vascular smooth muscle cells and pericytes during embryonic vessel formation in the mouse. Development 126: 3047–3055.
- 44 Sims DE. 2000. Diversity within pericytes. Clin Exp Pharmacol Physiol. 27: 842–846.
- 45 Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A. 2005. RBPjkappa-dependent Notch function regulates GATA2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132: 1117–1126.
- 46 Li W, et al. 2003. Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood 102: 4345–4353.
- 47 Robin C, et al. 2003. Developmental origins of hematopoietic stem cells. Oncol Res. 13: 315–321.
- 48 Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. 2005. The placenta is a niche for hematopoietic stem cells. Dev Cell 8: 365–375.
- 49 Marshall CJ, Kinnon C, Thrasher AJ. 2000. Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. Blood 96: 1591–1593.
- 50 Fossett N, Schulz RA. 2001. Functional conservation of hematopoietic factors in Drosophila and vertebrates. Differentiation 69: 83–90.
- 51 Nishikawa M, et al. 2001. Role of the microenvironment of the embryonic aorta-gonad-mesonephros region in hematopoiesis. Ann N Y Acad Sci 938: 109–116.
- 52 Tomancak P, et al. 2003. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biology 3: 1–18.
- 53 Hoffmann R, Valencia A. 2004. A gene network for navigating the literature. Nature Genetics 36: 664.
- 54 Akasaka T, et al. 2006. The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman. Proc Natl Acad Sci USA 103: 11999–2004.
- 55 Chutkow WA. et al. 2002. Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 K(ATP) channels. J Clin Invest 110: 203–208.
- 56 Fiore R, Rahim B, Christoffels VM, Moorman AF, Puschel AW. 2005. Inactivation of the Sema5a gene results in embryonic lethality and defective remodeling of the cranial vascular system. Mol Cell Biol 25: 2310–2319.
- 57 Khare N, Fascetti N, DaRocha S, Chiquet-Ehrismann R, Baumgartner S. 2000. Expression patterns of two new members of the Semaphorin family in Drosophila suggest early functions during embryogenesis. Mech Dev 91: 393–397.
- 58 Baba K, et al. 1999. The Drosophila Bruton's tyrosine kinase (Btk) homolog is required for adult survival and male genital formation. Mol Cell Biol 19: 4405–4413.
- 59 Ellmeier W, et al. 2000. Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J Exp Med 192: 1611–1624.
- 60 Bier E, Bodmer R. 2004. Drosophila, an emerging model for cardiac disease. Gene 342: 1–11.