Small-strain stiffness in geotechnical analyses
Thomas Benz Prof. Dr.-Ing.
Geotechnical Division, Dept. of Civil and Transport Engineering, NTNU, Høgskoleringen 7a, N-7034 Trondheim, Norway
Search for more papers by this authorRadu Schwab Dr.-Ing.
Federal Waterways Engineering and Research Institute, Kußmaulstraße 17, D-76187 Karlsruhe, Germany
Search for more papers by this authorPieter Vermeer Prof. Dr.-Ing.
Institute of Geotechnical Engineering, University Stuttgart, Pfaffenwaldring 35, D-70569 Stuttgart, Germany
Search for more papers by this authorThomas Benz Prof. Dr.-Ing.
Geotechnical Division, Dept. of Civil and Transport Engineering, NTNU, Høgskoleringen 7a, N-7034 Trondheim, Norway
Search for more papers by this authorRadu Schwab Dr.-Ing.
Federal Waterways Engineering and Research Institute, Kußmaulstraße 17, D-76187 Karlsruhe, Germany
Search for more papers by this authorPieter Vermeer Prof. Dr.-Ing.
Institute of Geotechnical Engineering, University Stuttgart, Pfaffenwaldring 35, D-70569 Stuttgart, Germany
Search for more papers by this authorAbstract
Nonlinear soil behaviour at small strains is often neglected in geotechnical analyses. Doing so often leads to an overestimation of foundation settlements and retaining wall deflections. Settlement troughs behind retaining walls or above tunnels, on the other hand, may be analysed as too flat and extended. Comparing measured displacements of piles or anchors within the working load range, to those calculated without considering small-strain stiffness, shows a considerably too soft response. This paper is concerned with a qualitative and quantitative discussion of the small-strain stiffness phenomenon. In combination with the commercially available small-strain stiffness model introduced, it provides the basics for incorporating small-strain stiffness into routine design.
References
- [1] Alpan, I.: The geotechnical properties of soils. Earth-Science Reviews 6 (1970), 5–49.
- [2] Al-Tabbaa, A., Muir Wood, D.: An experimentally based ‘bubble’ model for clay. Proc. NUMOG III, Vol. 1, 1989, 91–99.
- [3] Atkinson, J.H., Sallfors, G.: Experimental determination of soil properties, Proc. 10th ECSMFE, Florence, Vol. 3, 1991, 915–956.
- [4] Benz, T.: Small-strain stiffness of soils and its numerical consequences. Dissertationsschrift. Mitteilung 55 des Instituts für Geotechnik, Universität Stuttgart, 2007.
- [5] Benz, T., Vermeer, P. A.: Zuschrift zu: Über die Korrelation der ödometrischen und der dynamischen SteiFig.keit nichtbindiger Böden. Bautechnik 84 (2007) 5, 361–364.
- [6] Biarez, J., Hicher, P-Y.: Elementary Mechanics of Soil Behaviour. Rotterdam: A.A.Balkema, 1994.
- [7] Burland, J. B.: Small is beautifull – the stiffness of soils at small strains, 9th Laurits Bjerrum memorial lecture. Canadian Geotechnical Journal 26 (1989), 499–516.
- [8] Dietrich, T.: A comprehensive mechanical model of sand at low stress level. Proc. Speciality Session 9, 9th ICSMFE, Tokyo, 1/A/12, 1977, 33–43.
- [9] Hardin, B. O., Black, W. L.: Closure to vibration modulus of normally consolidated clays. ASCE: Journal of the Soil Mechanics and Foundations Division 95 (1969) SM6, 1531–1537.
- [10] Hardin, B. O., Drnevich, V. P.: Shear modulus and damping in soils: Design equations and curves. ASCE: Journal of the Soil Mechanics and Foundations Division 98 (1972) SM7, 667–692.
- [11] Hardin, B. O.: The Nature of Stress-Strain Behaviour of Soils. Proc. Earthquake Engineering and Soil Dynamics, Pasadena, Vol. 1, 1978, 3–90.
- [12] Hintner, J., Vermeer, P. A., Baun, C.: Advanced FE versus classical settlement analysis. Proc. NUMGE06, Graz, 2006, 539–546.
- [13] Hueckel, T., Nova, R.: Some hysteresis effects of the behavior of geological media. International Journal of Solids and Structures 15 (1979) 8, 625–642.
- [14] Jennings, P. C.: Periodic Response of a General Yielding Structure. ASCE: Journal of the Engineering Mechanics Division 90 (1964) EM2, 131–166.
- [15] Kolymbas, D.: An outline of hypoplasticity. Archive of Applied Mechanics 61 (1991), 143–151.
- [16] Lo Presti, D. C. F., Jamiolkowski, M., Pallara, O., Cavallaro, A.: Rate and Creep Effect on the Stiffness of Soils. In: Sheahan, Kaliakin (Hrsg): Measuring and Modeling Time Dependent Soil Behavior. ASCE Geotechnical Special Publication, 1996, 166–180.
- [17] Lunne, T., Robertson, P. K., Powell, J. J. M.: Cone Penetration Testing in Geotechnical Practice. London: E & FN Spon, 1997.
- [18] Masing, G.: Eigenspannungen und Verfestigung beim Messing. Proc. 2nd Int. Congr. Appl. Mech., Zürich, 1926.
- [19] Mroz, Z., Norris, V. A., Zienkiewicz, O. C.: An anisotropic critical state model for soils subject to cyclic loading. Géotechnique 31 (1981) 4, 451–469.
- [20] Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials 2 (1997) 4, 279–299.
- [21] Pestana, J. M., Whittle, A. J.: Formulation of a unified constitutive model for clays and sands. Int. J. Numer. Anal. Meth. 23 (1999), 1215–1243.
- [22] Pyke, R.: Nonlinear soil models for irregular cyclic loadings. ASCE: Journal of the Geotechnical Engineering Division 105 (1979) GT6, 715–726.
- [23] Ramberg, W., Osgood, W. R.: Description of stress-strain curve by three parameters. Technical Note 902, National Advisory Committee for Aeronautics, Washington, DC, 1943.
- [24] Richart Jr., F. E.: Some effects of dynamic soil properties on soil structure interaction. ASCE: Journal of the Geotechnical Engineering Division 101 (1975) GT12, 1193–1240.
- [25] Rosenblueth, E., Herrera, I.: On a kind of hysteretic damping. ASCE: Journal of the Engineering Mechanics Division 90 (1964) EM4, 37–47.
- [26] Schanz, T., Vermeer, P. A., Bonnier, P. G.: The hardening soil model – formulation and verification. In: Brinkgreve, R. (Hrsg.): Beyond 2000 in computational geotechnics, Rotterdam: Balkema, 1999, 281–296.
- [27] Schweiger, H. F.: Influence of soil parameters on numerical analysis of a deep excavation. Proc. Int. Symp. Ident. and Det. of Soil and Rock Para. for Geot. Design, Paris, 2002, 573–580.
- [28] Seed, H. B., Idriss, I. M.: Soil moduli and damping factors for dynamic response analysis. Report 70-10, EERC (Berkeley, California), 1970.
- [29] Simpson, B.: Retaining structures: displacement and design. The 32nd Rankine Lecture. Géotechnique 42 (1992) 4, 541–576.
- [30] Stokoe, K. H., Darendeli, M. B., Andrus, R. D., Brown, L. T.: Dynamic soil properties: laboratory, field and correlation studies. Proc. 2nd Int. Conf. on Earthquake Geotech. Eng., Vol. 3, 1999, 811–845.
- [31] Stokoe, K. H., Darendeli, M. B., Gilbert, R. B., Menq, F.-Y., Choi, W. K.: Development of a new family of normalized modulus reduction and material damping curves. Int. Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, Berkeley, 2004.
- [32] Stokoe, K. H., Santamarina, J. C.: Seismic-wave-based testing in geotechnical engineering. Proc. GeoEng 2000: An International Conference on Geotechnical and Geological Engineering, Melbourne, Vol. 1, 2000, 1490–1536.
- [33] Tatsuoka, F., Shibuya, S., Kuwano, R.: Advanced Laboratory Stress-Strain Testing of Geomaterials. Rotterdam: Balkema, 2001.
- [34] Toki, S., Shibuya, S., Yamashita, S.: Standardization of laboratory test methods to determine the cyclic deformation properties of geomaterials in Japan. In: Shibuya, S., Mitachi, T., Miura, S. (Hrsg.): Pre-failure Deformations of Geomaterials, Vol. 2, 1995, 741–784.
- [35] Viggiani, G., Atkinson, J. H.: Stiffness of fine grained soils at very small strains. Géotechnique 45 (1995) 2, 249–265.
- [36] Vucetic, M., Dobry, R.: Effect of Soil Plasticity on Cyclic Response. Journal of Geotechnical Engineering 117 (1991) 1, 89–107.
- [37] Wichtmann, T., Triantafyllidis, T.: Abschluss der Diskussion zu: Über die Korrelation der ödometrischen und der dynamischen SteiFig.keit nichtbindiger Böden. Bautechnik 84 (2007) 5, 364–366.