Atypical brain network development of infants at elevated likelihood for autism spectrum disorder during the first year of life
Corresponding Author
Fen Zhang
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
Correspondence
Fen Zhang, ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
Email: [email protected]
Search for more papers by this authorFloor Moerman
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
Search for more papers by this authorHaijing Niu
State Key Lab. of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
Search for more papers by this authorPetra Warreyn
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
Search for more papers by this authorHerbert Roeyers
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
Search for more papers by this authorCorresponding Author
Fen Zhang
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
Correspondence
Fen Zhang, ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
Email: [email protected]
Search for more papers by this authorFloor Moerman
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
Search for more papers by this authorHaijing Niu
State Key Lab. of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
Search for more papers by this authorPetra Warreyn
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
Search for more papers by this authorHerbert Roeyers
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
Search for more papers by this authorFunding information: China Scholarship Council, Grant/Award Number: 201606750005; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: FWO-SBO-S001517N; Support Fund Marguerite-Marie Delacroix
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral features that appear early in life. Although studies have shown that atypical brain functional and structural connectivity are associated with these behavioral traits, the occurrence and initial alterations of brain networks have not been fully investigated. The current study aimed to map early brain network efficiency and information transferring in infants at elevated likelihood (EL) compared to infants at typical likelihood (TL) for ASD in the first year of life. This study used a resting-state functional near-infrared spectroscopy (fNIRS) approach to obtain the length and strength of functional connections in the frontal and temporal areas in 45 5-month-old and 38 10-month-old infants. Modular organization and small-world properties were detected in both EL and TL infants at 5 and 10 months. In 5-month-old EL infants, local and nodal efficiency were significantly greater than age-matched TL infants, indicating overgrown local connections. Furthermore, we used a support vector machine (SVM) model to classify infants with or without EL based on the obtained global properties of the network, achieving an accuracy of 77.6%. These results suggest that infants with EL for ASD exhibit inefficiencies in the organization of brain networks during the first year of life.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
aur2827-sup-0001-Supinfo.docxWord 2007 document , 563.4 KB | Figure S1. The functional connectivity of deoxy-hemoglobin (Hbb) in each group. The averaged correlation matrices (the upper panel) and corresponding distribution of the r values (the lower panel) were indicated. The color scale represents r-values ranging from −0.2 to 0.8. Figure S2. The functional connectivity of oxy-hemoglobin (HbO) in EL subgroups of preterm and sibling infants. The averaged correlation matrices (the upper panel) and corresponding distribution of the r values (the lower panel) were indicated. The color scale represents r-values ranging from −0.2 to 0.8. Figure S3. The normalized clustering coefficient and characteristic path length at 1%–50% sparsity thresholds. The normalized values, by comparing the real network properties to the matched random network, in each group at different sparsity thresholds and violin distributions were depicted. **p < 0.01. Figure S4. The behavior-brain relation in 5- and 10-month-old infants with EL for ASD including participants who provided data at two age points. (A) The topographic map and channel layout. The blue circle indicates that the nodal degree and efficiency of channel 37 negatively correlated with symbolic scores, and the red circle indicates that nodal degree and efficiency of channel 49 positively correlated with social scores. (B) Scatter plot of the correlation between node properties and CSBS scores. *p < 0.05, †0.05 < p < 0.1 corrected by FDR. Table S1. Participants characteristics within the EL group. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abrams, D. A., Lynch, C. J., Cheng, K. M., Phillips, J., Supekar, K., Ryali, S., Uddin, L. Q., & Menon, V. (2013). Underconnectivity between voice-selective cortex and reward circuitry in children with autism. Proceedings of the National Academy of Sciences, 110(29), 12060–12065. https://doi.org/10.1073/pnas.1302982110
- Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), 174–183. https://doi.org/10.1371/journal.pcbi.0030017
- Agrawal, S., Rao, S. C., Bulsara, M. K., & Patole, S. K. (2018). Prevalence of autism spectrum disorder in preterm infants: A meta-analysis. Pediatrics, 142(3), 1–14. https://doi.org/10.1542/peds.2018-0134
- American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders ( 4th ed.). https://doi.org/10.1176/appi.books.9780890423349
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders ( 5th ed.). https://doi.org/10.1176/appi.books.9780890425596
10.1176/appi.books.9780890425596 Google Scholar
- Barttfeld, P., Wicker, B., Cukier, S., Navarta, S., Lew, S., & Sigman, M. (2011). A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia, 49(2), 254–263. https://doi.org/10.1016/j.neuropsychologia.2010.11.024
- Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. Journal of Neuroscience, 28(37), 9239–9248. https://doi.org/10.1523/JNEUROSCI.1929-08.2008
- Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited. The Neuroscientist, 23(5), 499–516. https://doi.org/10.1177/1073858416667720
- Bhat, A. N., McDonald, N. M., Eilbott, J. E., & Pelphrey, K. A. (2019). Exploring cortical activation and connectivity in infants with and without familial risk for autism during naturalistic social interactions: A preliminary study. Infant Behavior and Development, 57(November 2018), 101337. https://doi.org/10.1016/j.infbeh.2019.101337
- Bokobza, C., van Steenwinckel, J., Mani, S., Mezger, V., Fleiss, B., & Gressens, P. (2019). Neuroinflammation in preterm babies and autism spectrum disorders. Pediatric Research, 85(2), 155–165. https://doi.org/10.1038/s41390-018-0208-4
- Braukmann, R., Lloyd-Fox, S., Blasi, A., Johnson, M. H., Bekkering, H., Buitelaar, J. K., & Hunnius, S. (2017). Diminished socially selective neural processing in 5-month-old infants at high familial risk of autism. European Journal of Neuroscience, 1–9, 720–728. https://doi.org/10.1111/ejn.13751
- Cai, L., Dong, Q., & Niu, H. (2018). The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study. Developmental Cognitive Neuroscience, 30(March), 223–235. https://doi.org/10.1016/j.dcn.2018.03.003
- Ciarrusta, J., Dimitrova, R., Batalle, D., O'Muircheartaigh, J., Cordero-Grande, L., Price, A., Hughes, E., Kangas, J., Perry, E., Javed, A., Demilew, J., Hajnal, J., Edwards, A. D., Murphy, D., Arichi, T., & McAlonan, G. (2020). Emerging functional connectivity differences in newborn infants vulnerable to autism spectrum disorders. Translational Psychiatry, 10(1), 1–10. https://doi.org/10.1038/s41398-020-0805-y
- Clairmont, C., Wang, J., Tariq, S., Sherman, H. T., Zhao, M., & Kong, X. J. (2022). The value of brain imaging and electrophysiological testing for early screening of autism Spectrum disorder: A systematic review. Frontiers in Neuroscience, 15(February), 1–20. https://doi.org/10.3389/fnins.2021.812946
- Conti, E., Scaffei, E., Bosetti, C., Marchi, V., Costanzo, V., Dell'Oste, V., Mazziotti, R., Dell'Osso, L., Carmassi, C., Muratori, F., Baroncelli, L., Calderoni, S., & Battini, R. (2022). Looking for “fNIRS signature” in autism Spectrum: A systematic review starting from preschoolers. Frontiers in Neuroscience, 16(March), 1–13. https://doi.org/10.3389/fnins.2022.785993
- Damaraju, E., Caprihan, A., Lowe, J. R., Allen, E. A., Calhoun, V. D., & Phillips, J. P. (2014). Functional connectivity in the developing brain: A longitudinal study from 4 to 9months of age. NeuroImage, 84, 169–180. https://doi.org/10.1016/j.neuroimage.2013.08.038
- Dehaene-Lambertz, G., & Spelke, E. S. (2015). The infancy of the human brain. Neuron, 88(1), 93–109. https://doi.org/10.1016/j.neuron.2015.09.026
- Doria, V., Beckmann, C. F., Arichi, T., Merchant, N., Groppo, M., Turkheimer, F. E., Counsell, S. J., Murgasova, M., Aljabar, P., Nunes, R. G., Larkman, D. J., Rees, G., & Edwards, A. D. (2010). Emergence of resting state networks in the preterm human brain. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 20015–20020. https://doi.org/10.1073/pnas.1007921107
- Duan, L., Zhang, Y. J., & Zhu, C. Z. (2012). Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study. NeuroImage, 60(4), 2008–2018. https://doi.org/10.1016/j.neuroimage.2012.02.014
- Ebisch, S. J. H., Gallese, V., Willems, R. M., Mantini, D., Groen, W. B., Romani, G. L., Buitelaar, J. K., & Bekkering, H. (2011). Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Human Brain Mapping, 32(7), 1013–1028. https://doi.org/10.1002/hbm.21085
- Ecker, C., Bookheimer, S. Y., & Murphy, D. G. M. (2015). Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan. The Lancet Neurology, 14(11), 1121–1134. https://doi.org/10.1016/S1474-4422(15)00050-2
- Farahani, F. V., Karwowski, W., & Lighthall, N. R. (2019). Application of graph theory for identifying connectivity patterns in human brain networks: A systematic review. Frontiers in Neuroscience, 13(JUN), 1–27. https://doi.org/10.3389/fnins.2019.00585
- Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711. https://doi.org/10.1038/nrn2201
- Fransson, P., Åden, U., Blennow, M., & Lagercrantz, H. (2011). The functional architecture of the infant brain as revealed by resting-state fMRI. Cerebral Cortex, 21(1), 145–154. https://doi.org/10.1093/cercor/bhq071
- Gervain, J. (2014). Near-infrared spectroscopy: Recent advances in infant speech perception and language acquisition research. Frontiers in Psychology, 5(August), 1–2. https://doi.org/10.3389/fpsyg.2014.00916
- Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111. https://doi.org/10.1016/j.conb.2007.01.009
- Guo, Z., Cai, F., & He, S. (2013). Optimization for brain activity monitoring with near infrared light in a four-layered model of the human head. Progress In Electromagnetics Research, 140(April), 277–295. https://doi.org/10.2528/PIER13040203
- Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., Elison, J. T., Swanson, M. R., Zhu, H., Botteron, K. N., Collins, D. L., Constantino, J. N., Dager, S. R., Estes, A. M., Evans, A. C., Fonov, V. S., Gerig, G., Kostopoulos, P., McKinstry, R. C., … Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348–351. https://doi.org/10.1038/nature21369
- Hernandez, L. M., Rudie, J. D., Green, S. A., Bookheimer, S., & Dapretto, M. (2015). Neural signatures of autism spectrum disorders: Insights into brain network dynamics. Neuropsychopharmacology, 40(1), 171–189. https://doi.org/10.1038/npp.2014.172
- Huang, H., Shu, N., Mishra, V., Jeon, T., Chalak, L., Wang, Z. J., Rollins, N., Gong, G., Cheng, H., Peng, Y., Dong, Q., & He, Y. (2015). Development of human brain structural networks through infancy and childhood. Cerebral Cortex, 25(5), 1389–1404. https://doi.org/10.1093/cercor/bht335
- Hull, J. V., Jacokes, Z. J., Torgerson, C. M., Irimia, A., Van Horn, J. D., Aylward, E., Bernier, R., Bookheimer, S., Dapretto, M., Gaab, N., Geschwind, D., Jack, A., Nelson, C., Pelphrey, K., State, M., Ventola, P., & Webb, S. J. (2017). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7(JAN), 1–17. https://doi.org/10.3389/fpsyt.2016.00205
- Humphries, M. D., & Gurney, K. (2008). Network “small-world-ness”: A quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051. https://doi.org/10.1371/journal.pone.0002051
- Jiang, L., Hou, X. H., Yang, N., Yang, Z., & Zuo, X. N. (2015). Examination of local functional homogeneity in autism. BioMed Research International, 2015, 12–14. https://doi.org/10.1155/2015/174371
- Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an fmri study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17(4), 951–961. https://doi.org/10.1093/cercor/bhl006
- Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K., & Varma, S. (2012). Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity. Neuroscience and Biobehavioral Reviews, 36(4), 1292–1313. https://doi.org/10.1016/j.neubiorev.2012.02.007
- Kana, R. K., Libero, L. E., & Moore, M. S. (2011). Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Physics of Life Reviews, 8(4), 410–437. https://doi.org/10.1016/j.plrev.2011.10.001
- Keehn, B., Wagner, J. B., Tager-Flusberg, H., & Nelson, C. A. (2013). Functional connectivity in the first year of life in infants at-risk for autism: A preliminary near-infrared spectroscopy study. Frontiers in Human Neuroscience, 7(8), 1–10. https://doi.org/10.3389/fnhum.2013.00444
- Kim, D., Lee, J. Y., Jeong, B. C., Ahn, J. H., Kim, J. I., Lee, E. S., Kim, H., Lee, H. J., & Han, C. E. (2021). Overconnectivity of the right Heschl's and inferior temporal gyrus correlates with symptom severity in preschoolers with autism spectrum disorder. Autism Research, 14(11), 2314–2329. https://doi.org/10.1002/aur.2609
- Latora, V., & Marchiori, M. (2003). Economic small-world behavior in weighted networks. European Physical Journal B, 32(2), 249–263. https://doi.org/10.1140/epjb/e2003-00095-5
- Laverty, C., Surtees, A., O'Sullivan, R., Sutherland, D., Jones, C., & Richards, C. (2021). The prevalence and profile of autism in individuals born preterm: A systematic review and meta-analysis. Journal of Neurodevelopmental Disorders, 13(1), 1–12. https://doi.org/10.1186/s11689-021-09402-0
- Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866–1872. https://doi.org/10.3174/ajnr.A3263
- Lee, W., Morgan, B. R., Shroff, M. M., Sled, J. G., & Taylor, M. J. (2013). The development of regional functional connectivity in preterm infants into early childhood. Neuroradiology, 55(Suppl. 2), 105–111. https://doi.org/10.1007/s00234-013-1232-z
- Lewis, J. D., Evans, A. C., Pruett, J. R., Botteron, K., Zwaigenbaum, L., Estes, A., Gerig, G., Collins, L., Kostopoulos, P., McKinstry, R., Dager, S., Paterson, S., Schultz, R. T., Styner, M., Hazlett, H., & Piven, J. (2014). Network inefficiencies in autism spectrum disorder at 24 months. Translational Psychiatry, 4(5), e388–e311. https://doi.org/10.1038/tp.2014.24
- Lewis, J. D., Evans, A. C., Pruett, J. R., Botteron, K. N., McKinstry, R. C., Zwaigenbaum, L., Estes, A. M., Collins, D. L., Kostopoulos, P., Gerig, G., Dager, S. R., Paterson, S., Schultz, R. T., Styner, M. A., Hazlett, H. C., Piven, J., Piven, J., Hazlett, H. C., Chappell, C., … Gu, H. (2017). The emergence of network inefficiencies in infants with autism Spectrum disorder. Biological Psychiatry, 82(3), 176–185. https://doi.org/10.1016/j.biopsych.2017.03.006
- Livingston, L. A., & Happé, F. (2017). Conceptualising compensation in neurodevelopmental disorders: Reflections from autism spectrum disorder. Neuroscience and Biobehavioral Reviews, 80(May), 729–742. https://doi.org/10.1016/j.neubiorev.2017.06.005
- Lloyd-Fox, S., Blasi, A., & Elwell, C. E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 34(3), 269–284. https://doi.org/10.1016/j.neubiorev.2009.07.008
- Lubsen, J., Vohr, B., Myers, E., Hampson, M., Lacadie, C., Schneider, K. C., Katz, K. H., Constable, R. T., & Ment, L. R. (2011). Microstructural and functional connectivity in the developing preterm brain. Seminars in Perinatology, 35(1), 34–43. https://doi.org/10.1053/j.semperi.2010.10.006
- McDonald, N. M., & Jeste, S. S. (2021). Beyond baby siblings—Expanding the definition of “high-risk infants” in autism research. Current Psychiatry Reports, 23(6), 34. https://doi.org/10.1007/s11920-021-01243-x
- McPartland, J. C., Lerner, M. D., Bhat, A., Clarkson, T., Jack, A., Koohsari, S., Matuskey, D., McQuaid, G. A., Su, W. C., & Trevisan, D. A. (2021). Looking Back at the next 40 years of ASD neuroscience research. Journal of Autism and Developmental Disorders, 51(12), 4333–4353. https://doi.org/10.1007/s10803-021-05095-5
- Messinger, D. S., Young, G. S., Webb, S. J., Ozonoff, S., Bryson, S. E., Carter, A., Carver, L., Charman, T., Chawarska, K., Curtin, S., Dobkins, K., Hertz-Picciotto, I., Hutman, T., Iverson, J. M., Landa, R., Nelson, C. A., Stone, W. L., Tager-Flusberg, H., & Zwaigenbaum, L. (2015). Early sex differences are not autism-specific: A baby siblings research consortium (BSRC) study. Molecular Autism, 6(1), 1–12. https://doi.org/10.1186/s13229-015-0027-y
- Mitra, A., Snyder, A. Z., Tagliazucchi, E., Laufs, H., Elison, J., Emerson, R. W., Shen, M. D., Wolff, J. J., Botteron, K. N., Dager, S., Estes, A. M., Evans, A. C., Gerig, G., Hazlett, H. C., Paterson, S. J., Schultz, R. T., Styner, M. A., Zwaigenbaum, L., The IBIS Network, … Raichle, M. (2017). Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness. PLoS One, 12(11), 1–19. https://doi.org/10.1371/journal.pone.0188122
- O'Reilly, C., Lewis, J. D., & Elsabbagh, M. (2017). Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS One, 12(5), 1–28. https://doi.org/10.1371/journal.pone.0175870
- Ozonoff, S., Young, G. S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., Bryson, S., Carver, L. J., Constantino, J. N., Dobkins, K., Hutman, T., Iverson, J. M., Landa, R., Rogers, S. J., Sigman, M., & Stone, W. L. (2011). Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics, 128, e488–e495. https://doi.org/10.1542/peds.2010-2825
- Pecukonis, M., Young, G. S., Brian, J., Charman, T., Chawarska, K., Elsabbagh, M., Iverson, J. M., Jeste, S., Landa, R., Messinger, D. S., Schwichtenberg, A. J., Webb, S. J., Zwaigenbaum, L., & Tager-Flusberg, H. (2022). Early predictors of language skills at 3 years of age vary based on diagnostic outcome: A baby siblings research consortium study. Autism Research, 2021, 1324–1335. https://doi.org/10.1002/aur.2760
- Pruett, J. R., Kandala, S., Hoertel, S., Snyder, A. Z., Elison, J. T., Nishino, T., Feczko, E., Dosenbach, N. U. F., Nardos, B., Power, J. D., Adeyemo, B., Botteron, K. N., McKinstry, R. C., Evans, A. C., Hazlett, H. C., Dager, S. R., Paterson, S., Schultz, R. T., Collins, D. L., … Piven, J. (2015). Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data. Developmental Cognitive Neuroscience, 12, 123–133. https://doi.org/10.1016/j.dcn.2015.01.003
- Quaresima, V., & Ferrari, M. (2019). Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: A concise review. Organizational Research Methods, 22(1), 46–68. https://doi.org/10.1177/1094428116658959
- Rahman, M. A., Siddik, A. B., Ghosh, T. K., Khanam, F., & Ahmad, M. (2020). A narrative review on clinical applications of fNIRS. Journal of Digital Imaging, 33(5), 1167–1184. https://doi.org/10.1007/s10278-020-00387-1
- Righi, G., Tierney, A. L., Tager-Flusberg, H., & Nelson, C. A. (2014). Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An EEG study. PLoS One, 9(8), e105176. https://doi.org/10.1371/journal.pone.0105176
- Rudie, J. D., Brown, J. A., Beck-Pancer, D., Hernandez, L. M., Dennis, E. L., Thompson, P. M., Bookheimer, S. Y., & Dapretto, M. (2013). Altered functional and structural brain network organization in autism. NeuroImage: Clinical, 2(1), 79–94. https://doi.org/10.1016/j.nicl.2012.11.006
- Skau, S., Helenius, O., Sundberg, K., Bunketorp-Käll, L., & Kuhn, H.-G. (2022). Proactive cognitive control, mathematical cognition and functional activity in the frontal and parietal cortex in primary school children: An fNIRS study. Trends in Neuroscience and Education, 28, 100180. https://doi.org/10.1016/j.tine.2022.100180
- Sporns, O. (2018). Graph theory methods: Applications in brain networks. Dialogues in Clinical Neuroscience, 20(2), 111–121. https://doi.org/10.31887/DCNS.2018.20.2/osporns
- Swanson, M. R., Shen, M. D., Wolff, J. J., Elison, J. T., Emerson, R. W., Styner, M. A., Hazlett, H. C., Truong, K., Watson, L. R., Paterson, S., Marrus, N., Botteron, K. N., Pandey, J., Schultz, R. T., Dager, S. R., Zwaigenbaum, L., Estes, A. M., Piven, J., & IBIS Network. (2017). Subcortical brain and behavior phenotypes differentiate infants with autism versus language delay. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(8), 664–672. https://doi.org/10.1016/j.bpsc.2017.07.007
- Szatmari, P., Chawarska, K., Dawson, G., Georgiades, S., Landa, R., Lord, C., Messinger, D. S., Thurm, A., & Halladay, A. (2016). Prospective longitudinal studies of infant siblings of children with autism: Lessons learned and future directions. Journal of the American Academy of Child and Adolescent Psychiatry, 55(3), 179–187. https://doi.org/10.1016/j.jaac.2015.12.014
- Van Den Heuvel, M. P., Kersbergen, K. J., De Reus, M. A., Keunen, K., Kahn, R. S., Groenendaal, F., De Vries, L. S., & Benders, M. J. N. L. (2015). The neonatal connectome during preterm brain development. Cerebral Cortex, 25(9), 3000–3013. https://doi.org/10.1093/cercor/bhu095
- Verhaeghe, L., Dereu, M., Warreyn, P., De Groote, I., Vanhaesebrouck, P., & Roeyers, H. (2016). Extremely preterm born children at very high risk for developing autism spectrum disorder. Child Psychiatry and Human Development, 47(5), 729–739. https://doi.org/10.1007/s10578-015-0606-3
- Vissers, M. E., Cohen, M. X., & Geurts, H. M. (2012). Brain connectivity and high functioning autism: A promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neuroscience and Biobehavioral Reviews, 36(1), 604–625. https://doi.org/10.1016/j.neubiorev.2011.09.003
- Wang, J., Dong, Q., & Niu, H. (2017). The minimum resting-state fNIRS imaging duration for accurate and stable mapping of brain connectivity network in children. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-06340-7
- Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9(June), 1–16. https://doi.org/10.3389/fnhum.2015.00386
- Wang, Q., Zhu, G. P., Yi, L., Cui, X. X., Wang, H., Wei, R. Y., & Hu, B. L. (2020). A review of functional near-infrared spectroscopy studies of motor and cognitive function in preterm infants. Neuroscience Bulletin, 36(3), 321–329. https://doi.org/10.1007/s12264-019-00441-1
- Wang, T., & Su, C. H. (2022). Medium Gaussian SVM, wide neural network and stepwise linear method in estimation of Lornoxicam pharmaceutical solubility in supercritical solvent. Journal of Molecular Liquids, 349, 118120. https://doi.org/10.1016/j.molliq.2021.118120
- Washington, S. D., Gordon, E. M., Brar, J., Warburton, S., Sawyer, A. T., Wolfe, A., Mease-Ference, E. R., Girton, L., Hailu, A., Mbwana, J., Gaillard, W. D., Kalbfleisch, M. L., & Vanmeter, J. W. (2014). Dysmaturation of the default mode network in autism. Human Brain Mapping, 35(4), 1284–1296. https://doi.org/10.1002/hbm.22252
- Wetherby, A. M., & Prizant, B. M. (2002). Communication and symbolic behavior scales: Developmental profile. Paul H Brookes Publishing Co.
- Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S., Botteron, K. N., Dager, S. R., Dawson, G., Estes, A. M., Evans, A. C., Hazlett, H. C., Kostopoulos, P., McKinstry, R. C., Paterson, S. J., Schultz, R. T., Zwaigenbaum, L., & Piven, J. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. American Journal of Psychiatry, 169(6), 589–600. https://doi.org/10.1176/appi.ajp.2011.11091447
- Xu, J., Liu, X., Zhang, J., Li, Z., Wang, X., Fang, F., & Niu, H. (2015). FC-NIRS: A functional connectivity analysis tool for near-infrared spectroscopy data. BioMed Research International, 2015, 1–11. https://doi.org/10.1155/2015/248724
- Yap, P. T., Fan, Y., Chen, Y., Gilmore, J. H., Lin, W., & Shen, D. (2011). Development trends of white matter connectivity in the first years of life. PLoS One, 6(9), e24678. https://doi.org/10.1371/journal.pone.0024678
- Yin, W., Mostafa, S., & Wu, F. X. (2021). Diagnosis of autism Spectrum disorder based on functional brain networks with deep learning. Journal of Computational Biology, 28(2), 146–165. https://doi.org/10.1089/cmb.2020.0252
- Yücel, M. A., Lühmann, A. v., Scholkmann, F., Gervain, J., Dan, I., Ayaz, H., Boas, D., Cooper, R. J., Culver, J., Elwell, C. E., Eggebrecht, A., Franceschini, M. A., Grova, C., Homae, F., Lesage, F., Obrig, H., Tachtsidis, I., Tak, S., Tong, Y., … Wolf, M. (2021). Best practices for fNIRS publications. Neurophotonics, 8(1), 1–34. https://doi.org/10.1117/1.nph.8.1.012101
- Zhang, F., & Roeyers, H. (2019). Exploring brain functions in autism spectrum disorder: A systematic review on functional near-infrared spectroscopy (fNIRS) studies. International Journal of Psychophysiology, 137(August 2018), 41–53. https://doi.org/10.1016/j.ijpsycho.2019.01.003
- Zhang, Y.-J., Lu, C.-M., Biswal, B. B., Zang, Y.-F., Peng, D.-L., & Zhu, C.-Z. (2013). Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy. Journal of Biomedical Optics, 15(4), 047003. https://doi.org/10.1117/1.3462973