Associations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children
Ashley Y. Song
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Search for more papers by this authorKelly Bakulski
Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
Search for more papers by this authorJason I. Feinberg
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Search for more papers by this authorCraig Newschaffer
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
College of Health and Human Development, Pennsylvania State University, State College, Pennsylvania, USA
Search for more papers by this authorLisa A. Croen
Division of Research, Kaiser Permanente, Oakland, California, USA
Search for more papers by this authorIrva Hertz-Picciotto
Department of Public Health Sciences and The MIND Institute, School of Medicine, University of California-Davis, Davis, California, USA
Search for more papers by this authorRebecca J. Schmidt
Department of Public Health Sciences and The MIND Institute, School of Medicine, University of California-Davis, Davis, California, USA
Search for more papers by this authorHomayoon Farzadegan
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Search for more papers by this authorKristen Lyall
A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
Search for more papers by this authorM. Daniele Fallin
Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
Search for more papers by this authorHeather E. Volk
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Search for more papers by this authorCorresponding Author
Christine Ladd-Acosta
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Correspondence
Christine Ladd-Acosta, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room W6509, Baltimore, MD 21205, USA.
Email: [email protected]
Search for more papers by this authorAshley Y. Song
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Search for more papers by this authorKelly Bakulski
Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
Search for more papers by this authorJason I. Feinberg
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Search for more papers by this authorCraig Newschaffer
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
College of Health and Human Development, Pennsylvania State University, State College, Pennsylvania, USA
Search for more papers by this authorLisa A. Croen
Division of Research, Kaiser Permanente, Oakland, California, USA
Search for more papers by this authorIrva Hertz-Picciotto
Department of Public Health Sciences and The MIND Institute, School of Medicine, University of California-Davis, Davis, California, USA
Search for more papers by this authorRebecca J. Schmidt
Department of Public Health Sciences and The MIND Institute, School of Medicine, University of California-Davis, Davis, California, USA
Search for more papers by this authorHomayoon Farzadegan
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Search for more papers by this authorKristen Lyall
A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
Search for more papers by this authorM. Daniele Fallin
Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
Search for more papers by this authorHeather E. Volk
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Search for more papers by this authorCorresponding Author
Christine Ladd-Acosta
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
Correspondence
Christine Ladd-Acosta, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room W6509, Baltimore, MD 21205, USA.
Email: [email protected]
Search for more papers by this authorHeather E. Volk and Christine Ladd-Acosta contributed equally
Funding information: Autism Speaks; National Institutes of Health (NIH) to Craig Newschaffer, M. Daniele Fallin, and Andrew Feinberg, Grant/Award Numbers: R01ES016443, R01ES017646; Johns Hopkins Genetic Resources Core Facility, Grant/Award Number: RRID:SCR_018669
Abstract
Parental age is a known risk factor for autism spectrum disorder (ASD), however, studies to identify the biologic changes underpinning this association are limited. In recent years, “epigenetic clock” algorithms have been developed to estimate biologic age and to evaluate how the epigenetic aging impacts health and disease. In this study, we examined the relationship between parental epigenetic aging and their child's prospective risk of ASD and autism related quantitative traits in the Early Autism Risk Longitudinal Investigation study. Estimates of epigenetic age were computed using three robust clock algorithms and DNA methylation measures from the Infinium HumanMethylation450k platform for maternal blood and paternal blood specimens collected during pregnancy. Epigenetic age acceleration was defined as the residual of regressing chronological age on epigenetic age while accounting for cell type proportions. Multinomial logistic regression and linear regression models were completed adjusting for potential confounders for both maternal epigenetic age acceleration (n = 163) and paternal epigenetic age acceleration (n = 80). We found accelerated epigenetic aging in mothers estimated by Hannum's clock was significantly associated with lower cognitive ability and function in offspring at 12 months, as measured by Mullen Scales of Early Learning scores (β = −1.66, 95% CI: −3.28, −0.04 for a one-unit increase). We also observed a marginal association between accelerated maternal epigenetic aging by Horvath's clock and increased odds of ASD in offspring at 36 months of age (aOR = 1.12, 95% CI: 0.99, 1.26). By contrast, fathers accelerated aging was marginally associated with decreased ASD risk in their offspring (aOR = 0.83, 95% CI: 0.68, 1.01). Our findings suggest epigenetic aging could play a role in parental age risks on child brain development.
CONFLICT OF INTEREST
The authors declare they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data are available through the National Institute of Mental Health Data Archive (NDA) under the collections for the EARLI network (1600). https://nda.nih.gov/edit_collection.html?id=1600.
Supporting Information
Filename | Description |
---|---|
aur2822-sup-0001-supinfo.docxWord 2007 document , 478 KB | APPENDIX S1 Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alisch, R. S., Barwick, B. G., Chopra, P., Myrick, L. K., Satten, G. A., Conneely, K. N., & Warren, S. T. (2012). Age-associated DNA methylation in pediatric populations. Genome Research, 22, 623–632.
- Ambatipudi, S., Horvath, S., Perrier, F., Cuenin, C., Hernandez-Vargas, H., Le Calvez-Kelm, F., Durand, G., Byrnes, G., Ferrari, P., Bouaoun, L., Sklias, A., Chajes, V., Overvad, K., Severi, G., Baglietto, L., Clavel-Chapelon, F., Kaaks, R., Barrdahl, M., Boeing, H., … Herceg, Z. (2017). DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. European Journal of Cancer, 75, 299–307.
- Andrews, S. V., Sheppard, B., Windham, G. C., Schieve, L. A., Schendel, D. E., Croen, L. A., Chopra, P., Alisch, R. S., Newschaffer, C. J., Warren, S. T., Feinberg, A. P., Fallin, M. D., & Ladd-Acosta, C. (2018). Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. Molecular Autism, 9, 40.
- Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., & Irizarry, R. A. (2014). Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 30, 1363–1369.
- Aung, M. T., Bakulski, K. M., Feinberg, J. I., Dou, J. F., Meeker, J. D., Mukherjee, B., Loch-Caruso, R., Ladd-Acosta, C., Volk, H. E., Croen, L. A., Hertz-Picciotto, I., Newschaffer, C. J., & Fallin, M. D. (2021). Maternal blood metal concentrations and whole blood DNA methylation during pregnancy in the Early Autism Risk Longitudinal Investigation (EARLI). Epigenetics, 17(3), 253–268. https://doi.org/10.1080/15592294.2021.1897059
- Bakulski, K. M., Dou, J. F., Feinberg, J. I., Aung, M. T., Ladd-Acosta, C., Volk, H. E., Newschaffer, C. J., Croen, L. A., Hertz-Picciotto, I., Levy, S. E., Landa, R., Feinberg, A. P., & Fallin, M. D. (2021). Autism-associated DNA methylation at birth from multiple tissues is enriched for autism genes in the early autism risk longitudinal investigation. Frontiers in Molecular Neuroscience, 14, 775390.
- Bell, J. T., Tsai, P. C., Yang, T. P., Pidsley, R., Nisbet, J., Glass, D., Mangino, M., Zhai, G., Zhang, F., Valdes, A., Shin, S. Y., Dempster, E. L., Murray, R. M., Grundberg, E., Hedman, A. K., Nica, A., Small, K. S., Mu, T. C., Dermitzakis, E. T., … Deloukas, P. (2012). Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genetics, 8, e1002629.
- Bormann, F., Rodriguez-Paredes, M., Hagemann, S., Manchanda, H., Kristof, B., Gutekunst, J., Raddatz, G., Haas, R., Terstegen, L., Wenck, H., Kaderali, L., Winnefeld, M., & Lyko, F. (2016). Reduced DNA methylation patterning and transcriptional connectivity define human skin aging. Aging Cell, 15, 563–571.
- Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P. C., Roetker, N. S., Just, A. C., Demerath, E. W., Guan, W., Bressler, J., Fornage, M., Studenski, S., Vandiver, A. R., Moore, A. Z., Tanaka, T., Kiel, D. P., Liang, L., Vokonas, P., … Horvath, S. (2016). DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging (Albany NY), 8, 1844–1865.
- Cicchetti, S. S. S. D. V. (1989). The Vineland adaptive behavior scales. In Major psychological assessment instruments. Allyn & Bacon.
- Dugue, P. A., Bassett, J. K., Joo, J. E., Jung, C. H., Ming Wong, E., Moreno-Betancur, M., Schmidt, D., Makalic, E., Li, S., Severi, G., Hodge, A. M., Buchanan, D. D., English, D. R., Hopper, J. L., Southey, M. C., Giles, G. G., & Milne, R. L. (2018). DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. International Journal of Cancer, 142, 1611–1619.
- Durso, D. F., Bacalini, M. G., Sala, C., Pirazzini, C., Marasco, E., Bonafe, M., Do Valle, I. F., Gentilini, D., Castellani, G., Faria, A. M. C., Franceschi, C., Garagnani, P., & Nardini, C. (2017). Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget, 8, 23237–23245.
- Fries, G. R., Bauer, I. E., Scaini, G., Wu, M. J., Kazimi, I. F., Valvassori, S. S., Zunta-Soares, G., Walss-Bass, C., Soares, J. C., & Quevedo, J. (2017). Accelerated epigenetic aging and mitochondrial DNA copy number in bipolar disorder. Translational Psychiatry, 7, 1283.
- Girard, S. L., Bourassa, C. V., Lemieux Perreault, L. P., Legault, M. A., Barhdadi, A., Ambalavanan, A., Brendgen, M., Vitaro, F., Noreau, A., Dionne, G., Tremblay, R. E., Dion, P. A., Boivin, M., Dube, M. P., & Rouleau, G. A. (2016). Paternal age explains a major portion of De novo germline mutation rate variability in healthy individuals. PLoS One, 11, e0164212.
- Gratten, J., Wray, N. R., Peyrot, W. J., McGrath, J. J., Visscher, P. M., & Goddard, M. E. (2016). Risk of psychiatric illness from advanced paternal age is not predominantly from De novo mutations. Nature Genetics, 48(7), 718–724. https://doi.org/10.1038/ng.3577
- Grether, J. K., Anderson, M. C., Croen, L. A., Smith, D., & Windham, G. C. (2009). Risk of autism and increasing maternal and paternal age in a large north American population. American Journal of Epidemiology, 170, 1118–1126.
- Hannon, E., Schendel, D., Ladd-Acosta, C., Grove, J. L. P.-B. A. S. D. G., Hansen, C. S., Andrews, S. V., Hougaard, D. M., Bresnahan, M., Mors, O., Hollegaard, M. V., Baekvad-Hansen, M., Hornig, M., Mortensen, P. B., Borglum, A. D., Werge, T., Pedersen, M. G., Nordentoft, M., Buxbaum, J., Daniele Fallin, M., … Mill, J. (2018). Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Medicine, 10, 19.
- Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49, 359–367.
- Heyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., Diez, J., Sanchez-Mut, J. V., Setien, F., Carmona, F. J., Puca, A. A., Sayols, S., Pujana, M. A., Serra-Musach, J., Iglesias-Platas, I., Formiga, F., Fernandez, A. F., Fraga, M. F., Heath, S. C., … Esteller, M. (2012). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences of The United States of America, 109, 10522–10527.
- Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, R115.
- Horvath, S., Erhart, W., Brosch, M., Ammerpohl, O., Von Schonfels, W., Ahrens, M., Heits, N., Bell, J. T., Tsai, P. C., Spector, T. D., Deloukas, P., Siebert, R., Sipos, B., Becker, T., Rocken, C., Schafmayer, C., & Hampe, J. (2014). Obesity accelerates epigenetic aging of human liver. Proceedings of the National Academy of Sciences of The United States of America, 111, 15538–15543.
- Horvath, S., Gurven, M., Levine, M. E., Trumble, B. C., Kaplan, H., Allayee, H., Ritz, B. R., Chen, B., Lu, A. T., Rickabaugh, T. M., Jamieson, B. D., Sun, D., Li, S., Chen, W., Quintana-Murci, L., Fagny, M., Kobor, M. S., Tsao, P. S., Reiner, A. P., … Assimes, T. L. (2016). An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biology, 17, 171.
- Horvath, S., Langfelder, P., Kwak, S., Aaronson, J., Rosinski, J., Vogt, T. F., Eszes, M., Faull, R. L., Curtis, M. A., Waldvogel, H. J., Choi, O. W., Tung, S., Vinters, H. V., Coppola, G., & Yang, X. W. (2016). Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY), 8, 1485–1512.
- Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19, 371–384.
- Horvath, S., & Ritz, B. R. (2015). Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging (Albany NY), 7, 1130–1142.
- Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., Wiencke, J. K., & Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86.
- Idring, S., Magnusson, C., Lundberg, M., Ek, M., Rai, D., Svensson, A. C., Dalman, C., Karlsson, H., & Lee, B. K. (2014). Parental age and the risk of autism spectrum disorders: Findings from a Swedish population-based cohort. International Journal of Epidemiology, 43, 107–115.
- Johnson, T. E. (2006). Recent results: Biomarkers of aging. Experimental Gerontology, 41, 1243–1246.
- Jylhava, J., Pedersen, N. L., & Hagg, S. (2017). Biological age predictors. EBioMedicine, 21, 29–36.
- Ladd-Acosta, C., Hansen, K. D., Briem, E., Fallin, M. D., Kaufmann, W. E., & Feinberg, A. P. (2014). Common DNA methylation alterations in multiple brain regions in autism. Molecular Psychiatry, 19, 862–871.
- Lee, B. K., & McGrath, J. J. (2015). Advancing parental age and autism: Multifactorial pathways. Trends in Molecular Medicine, 21, 118–125.
- Leppa, V. M., Kravitz, S. N., Martin, C. L., Andrieux, J., Le Caignec, C., Martin-Coignard, D., Dybuncio, C., Sanders, S. J., Lowe, J. K., Cantor, R. M., & Geschwind, D. H. (2016). Rare inherited and De novo CNVs reveal complex contributions to ASD risk in multiplex families. American Journal of Human Genetics, 99, 540–554.
- Levine, M. E., Hosgood, H. D., Chen, B., Absher, D., Assimes, T., & Horvath, S. (2015). DNA methylation age of blood predicts future onset of lung cancer in the women's health initiative. Aging (Albany NY), 7, 690–700.
- Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10, 573–591.
- Lewis, C. R., Taguinod, F., Jepsen, W. M., Cohen, J., Agrawal, K., Huentelman, M. J., Smith, C. J., Ringenbach, S. D. R., & Braden, B. B. (2020). Telomere length and autism Spectrum disorder within the family: Relationships with cognition and sensory symptoms. Autism Research, 13, 1094–1101.
- Li, Z., Tang, J., Li, H., Chen, S., He, Y., Liao, Y., Wei, Z., Wan, G., Xiang, X., Xia, K., & Chen, X. (2014). Shorter telomere length in peripheral blood leukocytes is associated with childhood autism. Scientific Reports, 4, 7073.
- Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., & Schopler, E. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19, 185–212.
- Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., & Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY), 11, 303–327.
- Lyall, K., Croen, L., Daniels, J., Fallin, M. D., Ladd-Acosta, C., Lee, B. K., Park, B. Y., Snyder, N. W., Schendel, D., Volk, H., Windham, G. C., & Newschaffer, C. (2017). The changing epidemiology of autism Spectrum disorders. Annual Review of Public Health, 38, 81–102.
- Lyall, K., Song, L., Botteron, K., Croen, L. A., Dager, S. R., Fallin, M. D., Hazlett, H. C., Kauffman, E., Landa, R., Ladd-Acosta, C., Messinger, D. S., Ozonoff, S., Pandey, J., Piven, J., Schmidt, R. J., Schultz, R. T., Stone, W. L., Newschaffer, C. J., & Volk, H. E. (2020). The association between parental age and autism-related outcomes in children at high familial risk for autism. Autism Research, 13, 998–1010.
- Martino, D. J., Tulic, M. K., Gordon, L., Hodder, M., Richman, T. R., Metcalfe, J., Prescott, S. L., & Saffery, R. (2011). Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics, 6, 1085–1094.
- Mullen, E. M. (1995). Mullen scales of early learning (AGS ed.). American Guidance Service Inc.
- Nelson, C. A., Varcin, K. J., Coman, N. K., De Vivo, I., & Tager-Flusberg, H. (2015). Shortened telomeres in families with a propensity to autism. Journal of the American Academy of Child and Adolescent Psychiatry, 54, 588–594.
- Nevalainen, T., Kananen, L., Marttila, S., Jylhava, J., Mononen, N., Kahonen, M., Raitakari, O. T., Hervonen, A., Jylha, M., Lehtimaki, T., & Hurme, M. (2017). Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clinical Epigenetics, 9, 20.
- Newschaffer, C. J., Croen, L. A., Fallin, M. D., Hertz-Picciotto, I., Nguyen, D. V., Lee, N. L., Berry, C. A., Farzadegan, H., Hess, H. N., Landa, R. J., Levy, S. E., Massolo, M. L., Meyerer, S. C., Mohammed, S. M., Oliver, M. C., Ozonoff, S., Pandey, J., Schroeder, A., & Shedd-Wise, K. M. (2012). Infant siblings and the investigation of autism risk factors. Journal of Neurodevelopmental Disorders, 4, 7.
- Ozonoff, S., Young, G. S., Belding, A., Hill, M., Hill, A., Hutman, T., Johnson, S., Miller, M., Rogers, S. J., Schwichtenberg, A. J., Steinfeld, M., & Iosif, A. M. (2014). The broader autism phenotype in infancy: When does it emerge? Journal of the American Academy of Child and Adolescent Psychiatry, 53, 398–407.e2.
- Perna, L., Zhang, Y., Mons, U., Holleczek, B., Saum, K. U., & Brenner, H. (2016). Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clinical Epigenetics, 8, 64.
- Roetker, N. S., Pankow, J. S., Bressler, J., Morrison, A. C., & Boerwinkle, E. (2018). Prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the ARIC study (atherosclerosis risk in communities). Circulation Genomic and Precision Medicine, 11, e001937.
- Rosen, A. D., Robertson, K. D., Hlady, R. A., Muench, C., Lee, J., Philibert, R., Horvath, S., Kaminsky, Z. A., & Lohoff, F. W. (2018). DNA methylation age is accelerated in alcohol dependence. Translational Psychiatry, 8, 182.
- Sandin, S., Schendel, D., Magnusson, P., Hultman, C., Suren, P., Susser, E., Gronborg, T., Gissler, M., Gunnes, N., Gross, R., Henning, M., Bresnahan, M., Sourander, A., Hornig, M., Carter, K., Francis, R., Parner, E., Leonard, H., Rosanoff, M., … Reichenberg, A. (2016). Autism risk associated with parental age and with increasing difference in age between the parents. Molecular Psychiatry, 21, 693–700.
- Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y. H., Hicks, J., Spence, S. J., Lee, A. T., Puura, K., Lehtimaki, T., … Wigler, M. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445–449.
- Teschendorff, A. E., Marabita, F., Lechner, M., Bartlett, T., Tegner, J., Gomez-Cabrero, D., & Beck, S. (2013). A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics, 29, 189–196.
- Virkud, Y. V., Todd, R. D., Abbacchi, A. M., Zhang, Y., & Constantino, J. N. (2009). Familial aggregation of quantitative autistic traits in multiplex versus simplex autism. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 150B, 328–334.
- Wu, S., Wu, F., Ding, Y., Hou, J., Bi, J., & Zhang, Z. (2017). Advanced parental age and autism risk in children: A systematic review and meta-analysis. Acta Psychiatrica Scandinavica, 135, 29–41.
- Zhao, M., Qin, J., Yin, H., Tan, Y., Liao, W., Liu, Q., Luo, S., He, M., Liang, G., Shi, Y., Zhang, Q., Cai, W., Yin, G., Zhou, Y., Wang, J., Li, M., Huang, Y., Liu, A., Wu, H., … Lu, Q. (2016). Distinct epigenomes in CD4+ T cells of newborns, middle-ages and centenarians. Scientific Reports, 6, 38411.