Equation of state and anisotropy of pressure of magnetars
Corresponding Author
Yong-Hong Li
Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng, China
Correspondence
Yong-Hong Li, Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China.
Email: [email protected]
Search for more papers by this authorWen-Qi Ma
Xinjiang Astronomical Observatory, Xinjiang, China
University of Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorHui Wang
Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng, China
Search for more papers by this authorCorresponding Author
Yong-Hong Li
Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng, China
Correspondence
Yong-Hong Li, Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China.
Email: [email protected]
Search for more papers by this authorWen-Qi Ma
Xinjiang Astronomical Observatory, Xinjiang, China
University of Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorHui Wang
Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng, China
Search for more papers by this authorAbstract
Magnetars are the neutron stars with the highest magnetic fields up to 1015–1016 G. It has been proposed that they are also responsible for a variety of extra-galactic phenomena, ranging from giant flares in nearby galaxies to fast radio bursts. Utilizing a relativistic mean field model and a variable magnetic field configuration, we investigate the effects of strong magnetic fields on the equation of state and anisotropy of pressure of magnetars. It is found that the mass and radius of low-mass magnetars are weakly enhanced under the action of the strong magnetic field, and the anisotropy of pressure can be ignored. Unlike other previous investigations, the magnetic field is unable to violate the mass limit of the neutron stars.
REFERENCES
- Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., et al. 2017, Phys. Rev. Lett., 119, 161101.
- Akmal, A., Pandharipande, V. R., & Ravenhall, D. G. 1998, Phys. Rev. C, 58, 1804.
- Antonopoulou, D., Haskell, B., & Espinoza, C. M. 2022, Rep. Progr. Phys., 85, 126901.
10.1088/1361-6633/ac9ced Google Scholar
- Bandyopadhyay, D., Chakrabarty, S., & Pal, S. 1997, Phys. Rev. Lett., 79, 2176.
- Beloborodov, A. M., & Li, X. 2016, ApJ, 833, 261.
- Broderick, A. E., Prakash, M., & Lattimer, J. M. 2002, Phys. Lett. B, 531, 167.
- Chakrabarty, S., Bandyopadhyay, D., & Pal, S. 1997, Phys. Rev. Lett., 78, 2898.
- Chamel, N. 2013, Phys. Rev. Lett., 110, 011101.
- Chen, J. L., Wang, H., Jia, H. Y., Ma, Z.-W., Li, Y.-H., & others 2019, Acta Phys. Sin., 68, 180401.
10.7498/aps.68.20190760 Google Scholar
- Cromartie, H. T., Fonseca, E., Ransom, S. M., Demorest, P. B., Arzoumanian, Z., et al. 2020, Nat. Astron., 4, 72.
- Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081.
- Dong, J., Zuo, W., & Gu, J. 2013, Phys. Rev. D, 87, 103010.
10.1103/PhysRevD.87.103010 Google Scholar
- Dong, J. M., Zuo, W., Yin, P., & Gu, J. Z. 2014, Phys. Rev. Lett., 112, 039001.
- Duncan, R. C., & Thompson, C. 1992, ApJ, 392, L9.
- Gao, Z. F., Wang, N., Yuan, J. P., Jiang, L., & Song, D. L. 2011a, Astrophys. Space Sci., 333, 427.
- Gao, Z. F., Wang, N., Yuan, J. P., Jiang, L., & Song, D. L. 2011b, Astrophys. Space Sci., 332, 129.
- Gao, Z.-F., Peng, Q.-H., Wang, N., & Chou, C.-K. 2012a, Chin. Phys. B, 21, 057109.
- Gao, Z. F., Peng, Q. H., Wang, N., & Yuan, J. P. 2012b, Astrophys. Space Sci., 342, 55.
- Gao, Z. F., Wang, N., Peng, Q. H., Li, X. D., & Du, Y. J. 2013, Mod. Phys. Lett. A, 28, 1350138.
- Gao, Z. F., Li, X. D., Wang, N., Yuan, J. P., Wang, P., et al. 2016, Mon Notice R Astron. Soc., 456, 55.
- Gao, Z. F., Shan, H., Wang, W., & Wang, N. 2017a, Astron. Nach., 338, 1066.
- Gao, Z.-F., Wang, N., Shan, H., Li, X.-D., & Wang, W. 2017b, ApJ, 849, 19.
- Gao, Z.-F., Omar, N., Shi, X.-C., & Wang, N. 2019, Astron. Nach., 340, 1030.
- Geng, L., Toki, H., & Meng, J. 2005, Progr. Theor. Phys., 113, 785.
- Isayev, A. A., & Yang, J. 2011, Phys. Rev. C, 84, 065802.
10.1103/PhysRevC.84.065802 Google Scholar
- Kaspi, V. M., & Beloborodov, A. M. 2017, Annu. Rev. Astron. Astrophys., 55, 261.
- Kozhberov, A. A., & Yakovlev, D. G. 2020, Mon. Notice R Astron. Soc., 498, 5149.
- Lander, S. K. 2023, ApJ, 947, L16.
10.3847/2041-8213/acca1f Google Scholar
- Li, X., & Beloborodov, A. M. 2015, ApJ, 815, 25.
10.1088/0004-637X/815/1/25 Google Scholar
- Li, B.-P., & Gao, Z.-F. 2023, Astron. Nach., 344, e20220111.
10.1002/asna.20220111 Google Scholar
- Li, X. H., Gao, Z. F., Li, X. D., Xu, Y., Wang, P., et al. 2016, Int. J. Mod. Phys. D, 25, 1650002.
- Margalit, B., & Metzger, B. D. 2017, ApJ, 850, L19.
- Oppenheimer, J. R., & Volkoff, G. M. 1939, Phys. Rev., 55, 374.
- Pei, X., Li, J., Duan, X., & Zhang, H. 2023, Publ. Astron. Soc. Pacific, 135, 075003.
10.1088/1538-3873/ace12d Google Scholar
- Peng, Q. H., & Tong, H. 2007, Mon. Notice R. Astron. Soc., 378, 159.
- Sugahara, Y., & Toki, H. 1994, Nucl. Phys. A, 579, 557.
- Tolman, R. C. 1939, Phys. Rev., 55, 364.
10.1103/PhysRev.55.364 Google Scholar
- Tsuruta, S., Kelly, M. J., Nomoto, K., Mori, K., Teter, M., & Liebmann, A. C. 2023, ApJ, 945, 151.
10.3847/1538-4357/acbd38 Google Scholar
- Tu, Z. Y., Yuen, R., & Han, X. H. 2022, J. Astrophys. Astron., 43, 28.
10.1007/s12036-022-09808-9 Google Scholar
- Vigano, D., Rea, N., Pons, J. A., Perna, R., Aguilera, D. N., & Miralles, J. A. 2013, Mon. Notice R Astron. Soc., 434, 123.
- Wang, H., Gao, Z., Wang, N., Jia, H., et al. 2019, Publ. Astron. Soc. Pacific, 131, 054201.
- Wang, H., Gao, Z.-F., Jia, H.-Y., Wang, N., & Li, X.-D. 2020, Universe, 6, 63.
- Wang, Y. N., Chu, P. C., Jiang, Y. Y., Pang, X. D., Wang, S. B., et al. 2022, Acta Phys. Sin., 71, 2221011.
- Wei, F. X., Mao, G. J., Ko, C. M., Kisslinger, L. S., Stöcker, H., et al. 2006, J. Phys. G Nucl. Phys., 32, 47.
- Wen, Z. G., Wang, N., Yan, W. M., Yuan, J. P., Liu, Z. Y., Chen, M. Z., & Chen, J. L. 2016a, Astrophys. Space Sci., 361, 261.
- Wen, Z. G., Wang, N., Yuan, J. P., Yan, W. M., Manchester, R. N., et al. 2016b, A&A, 592, A127.
- Wen, Z. G., Chen, J. L., Hao, L. F., Yan, W. M., Wang, H. G., et al. 2020a, ApJ, 900, 168.
- Wen, Z. G., Yan, W. M., Yuan, J. P., et al. 2020b, ApJ, 904, 72.
- Wen, Z. G., Yuen, R., Wang, N., et al. 2021, ApJ, 918, 57.
- Wen, Z. G., Yuan, J. P., Wang, N., Li, D., Chen, J. L., et al. 2022, ApJ, 929, 71.
10.3847/1538-4357/ac5d5d Google Scholar
- Xu, Y., Harrison, F. A., García, J. A., Fabian, A. C., & Fürst, F. 2018, ApJ, 852, L34.
10.3847/2041-8213/aaa4b2 Google Scholar
- Yan, W. M., Wang, N., Manchester, R. N., Wen, Z. G., & Yuan, J. P. 2018, Mon. Notice R. Astron. Soc., 476, 3677.
- Yan, W. M., Manchester, R. N., Wang, N., Wen, Z. G., Yuan, J. P., et al. 2020, Mon. Notice R. Astron. Soc., 491, 4634.
- Yan, F.-Z., Gao, Z.-F., Yang, W.-S., & Dong, A.-J. 2021, Astron. Nach., 342, 249.
- Yuan, J. P., Manchester, R. N., Wang, N., Wang, J. B., Zhou, X., Yan, W. M., & Liu, Z. Y. 2017, Mon. Notice R. Astron. Soc., 466, 1234.
- Yuen, R. 2019, Mon. Notice R. Astron. Soc., 486, 2011.
- Zhao, X.-F., & Tang, B. 2022, Brazil. J. Phys., 52, 149.
10.1007/s13538-022-01148-x Google Scholar
- Zhao, S.-Y., Liu, C.-Z., & Huang, X.-L. 2021, Acta Phys. Sin., 70, 222601.
10.7498/aps.70.20211051 Google Scholar
- Zhao, X. F., Huang, R., & Huo, J. L. 2022a, Int. J. Mod. Phys. D, 31, 2250062.
- Zhao, X.-F., Zhong, S.-R., & Huo, J.-L. 2022b, Chin. Phys. C, 46, 105102.
- Zhu, C., Gao, Z. F., Li, X. D., Wang, N., Yuan, J. P., & Peng, Q. H. 2016, Mod. Phys. Lett. A, 31, 1650070.