Review
Emerging roles of serine proteinases in tissue turnover in arthritis
J. M. Milner,
A. Patel,
A. D. Rowan,
Corresponding Author
J. M. Milner
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Musculoskeletal Research Group, Institute of Cellular Medicine, 4th Floor Cookson Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UKSearch for more papers by this authorA. Patel
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for more papers by this authorA. D. Rowan
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for more papers by this authorJ. M. Milner,
A. Patel,
A. D. Rowan,
Corresponding Author
J. M. Milner
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Musculoskeletal Research Group, Institute of Cellular Medicine, 4th Floor Cookson Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UKSearch for more papers by this authorA. Patel
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for more papers by this authorA. D. Rowan
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for more papers by this author
REFERENCES
- 1 Rowan AD, Litherland GJ, Hui W, Milner JM. Metalloproteases as potential therapeutic targets in arthritis treatment [review]. Expert Opin Ther Targets 2008; 12: 1–18.
- 2 Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression [review]. Nat Rev Cancer 2007; 7: 800–8.
- 3 Harris ED Jr, Cohen GL, Krane SM. Synovial collagenase: its presence in culture from joint disease of diverse etiology. Arthritis Rheum 1969; 12: 92–102.
- 4 Scheindlin S. Clinical enzymology: enzymes as medicine [review]. Mol Interv 2007; 7: 4–8.
- 5 Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res 2008; 36(Database issue): D320–5.
- 6 Pham CT. Neutrophil serine proteases: specific regulators of inflammation [review]. Nat Rev Immunol 2006; 6: 541–50.
- 7 Okroj M, Heinegard D, Holmdahl R, Blom AM. Rheumatoid arthritis and the complement system [review]. Ann Med 2007; 39: 517–30.
- 8 Daubie V, Pochet R, Houard S, Philippart P. Tissue factor: a mini-review [review]. J Tissue Eng Regen Med 2007; 1: 161–9.
- 9 Busso N, Hamilton JA. Extravascular coagulation and the plasminogen activator/plasmin system in rheumatoid arthritis [review]. Arthritis Rheum 2002; 46: 2268–79.
- 10 Varisco PA, Peclat V, van Ness K, Bischof-Delaloye A, So A, Busso N. Effect of thrombin inhibition on synovial inflammation in antigen induced arthritis. Ann Rheum Dis 2000; 59: 781–7.
- 11 Marty I, Peclat V, Kirdaite G, Salvi R, So A, Busso N. Amelioration of collagen-induced arthritis by thrombin inhibition. J Clin Invest 2001; 107: 631–40.
- 12 Busso N, Morard C, Salvi R, Peclat V, So A. Role of the tissue factor pathway in synovial inflammation. Arthritis Rheum 2003; 48: 651–9.
- 13 So AK, Varisco PA, Kemkes-Matthes B, Herkenne-Morard C, Chobaz-Peclat V, Gerster JC, et al. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 2003; 1: 2510–5.
- 14 Flick MJ, LaJeunesse CM, Talmage KE, Witte DP, Palumbo JS, Pinkerton MD, et al. Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin αMβ2 binding motif. J Clin Invest 2007; 117: 3224–35.
- 15 Ruf W, Dorfleutner A, Riewald M. Specificity of coagulation factor signaling [review]. J Thromb Haemost 2003; 1: 1495–503.
- 16 Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 2000; 97: 5255–60.
- 17 Ramachandran R, Hollenberg MD. Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more [review]. Br J Pharmacol 2008; 153 Suppl 1: S263–82.
- 18 Borensztajn K, Stiekema J, Nijmeijer S, Reitsma PH, Peppelenbosch MP, Spek CA. Factor Xa stimulates proinflammatory and profibrotic responses in fibroblasts via protease-activated receptor-2 activation. Am J Pathol 2008; 172: 309–20.
- 19 Morgan BP, Daniels RH, Williams BD. Measurement of terminal complement complexes in rheumatoid arthritis. Clin Exp Immunol 1988; 73: 473–8.
- 20 Neumann E, Barnum SR, Tarner IH, Echols J, Fleck M, Judex M, et al. Local production of complement proteins in rheumatoid arthritis synovium. Arthritis Rheum 2002; 46: 934–45.
- 21 Gulati P, Guc D, Lemercier C, Lappin D, Whaley K. Expression of the components and regulatory proteins of the classical pathway of complement in normal and diseased synovium. Rheumatol Int 1994; 14: 13–9.
- 22 Bradley K, North J, Saunders D, Schwaeble W, Jeziorska M, Woolley DE, et al. Synthesis of classical pathway complement components by chondrocytes. Immunology 1996; 88: 648–56.
- 23 Nakagawa K, Sakiyama H, Tsuchida T, Yamaguchi K, Toyoguchi T, Masuda R, et al. Complement C1s activation in degenerating articular cartilage of rheumatoid arthritis patients: immunohistochemical studies with an active form specific antibody. Ann Rheum Dis 1999; 58: 175–81.
- 24 Blom AM, Nandakumar KS, Holmdahl R. C4b-binding protein (C4BP) inhibits development of experimental arthritis in mice. Ann Rheum Dis 2008. E-pub ahead of print.
- 25 Song H, Qiao F, Atkinson C, Holers VM, Tomlinson S. A complement C3 inhibitor specifically targeted to sites of complement activation effectively ameliorates collagen-induced arthritis in DBA/1J mice. J Immunol 2007; 179: 7860–7.
- 26 Sjoberg A, Onnerfjord P, Morgelin M, Heinegard D, Blom AM. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem 2005; 280: 32301–8.
- 27 Busby WH Jr, Nam TJ, Moralez A, Smith C, Jennings M, Clemmons DR. The complement component C1s is the protease that accounts for cleavage of insulin-like growth factor-binding protein-5 in fibroblast medium. J Biol Chem 2000; 275: 37638–44.
- 28 Yamaguchi K, Sakiyama H, Matsumoto M, Moriya H, Sakiyama S. Degradation of type I and II collagen by human activated C1-s. FEBS Lett 1990; 268: 206–8.
- 29 Ellis V. Plasminogen activation at the cell surface [review]. Curr Top Dev Biol 2003; 54: 263–312.
- 30 Martel-Pelletier J, Faure MP, McCollum R, Mineau F, Cloutier JM, Pelletier JP. Plasmin, plasminogen activators and inhibitor in human osteoarthritic cartilage. J Rheumatol 1991; 18: 1863–71.
- 31 Cook AD, Braine EL, Campbell IK, Hamilton JA. Differing roles for urokinase and tissue-type plasminogen activator in collagen-induced arthritis. Am J Pathol 2002; 160: 917–26.
- 32 Hamilton JA. Plasminogen activator/plasmin system in arthritis and inflammation: friend or foe? [editorial]. Arthritis Rheum 2008; 58: 645–8.
- 33 Busso N, Peclat V, Van Ness K, Kolodziesczyk E, Degen J, Bugge T, et al. Exacerbation of antigen-induced arthritis in urokinase-deficient mice. J Clin Invest 1998; 102: 41–50.
- 34 Li J, Guo Y, Holmdahl R, Ny T. Contrasting roles of plasminogen deficiency in different rheumatoid arthritis models. Arthritis Rheum 2005; 52: 2541–8.
- 35 Li J, Ny A, Leonardsson G, Nandakumar KS, Holmdahl R, Ny T. The plasminogen activator/plasmin system is essential for development of the joint inflammatory phase of collagen type II-induced arthritis. Am J Pathol 2005; 166: 783–92.
- 36 Eeckhout Y, Vaes G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase: effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem J 1977; 166: 21–31.
- 37 Werb Z, Mainardi CL, Vater CA, Harris ED Jr. Endogenous activation of latent collagenase by rheumatoid synovial cells: evidence for a role of plasminogen activator. N Engl J Med 1977; 296: 1017–23.
- 38 Nagase H, Enghild JJ, Suzuki K, Salvesen G. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry 1990; 29: 5783–9.
- 39 Knauper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, et al. Cellular mechanisms for human procollagenase-3 (MMP-13) activation: evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem 1996; 271: 17124–31.
- 40 Majumdar M, Tarui T, Shi B, Akakura N, Ruf W, Takada Y. Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin α9β1. J Biol Chem 2004; 279: 37528–34.
- 41 Rifkin DB, Mazzieri R, Munger JS, Noguera I, Sung J. Proteolytic control of growth factor availability [review]. APMIS 1999; 107: 80–5.
- 42 Jenkins G. The role of proteases in transforming growth factor-β activation [review]. Int J Biochem Cell Biol 2008; 40: 1068–78.
- 43 Campbell PG, Andress DL. Plasmin degradation of insulin-like growth factor-binding protein-5 (IGFBP-5): regulation by IGFBP-5-(201-218). Am J Physiol 1997; 273(5 Pt 1): E996–1004.
- 44 Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator [review]. Nat Rev Mol Cell Biol 2002; 3: 932–43.
- 45 Yuan C, Huang M. Does the urokinase receptor exist in a latent form? Cell Mol Life Sci 2007; 64: 1033–7.
- 46 Jackson CJ, Xue M. Activated protein C: an anticoagulant that does more than stop clots. Int J Biochem Cell Biol 2008. E-pub ahead of print.
- 47 Jackson C, Nguyen M, Arkell J, Sambrook P. Selective matrix metalloproteinase (MMP) inhibition in rheumatoid arthritis: targetting gelatinase A activation. Inflamm Res 2001; 50: 183–6.
- 48 Buisson-Legendre N, Smith S, March L, Jackson C. Elevation of activated protein C in synovial joints in rheumatoid arthritis and its correlation with matrix metalloproteinase 2. Arthritis Rheum 2004; 50: 2151–6.
- 49 Xue M, March L, Sambrook PN, Jackson CJ. Differential regulation of matrix metalloproteinase 2 and matrix metalloproteinase 9 by activated protein C: relevance to inflammation in rheumatoid arthritis. Arthritis Rheum 2007; 56: 2864–74.
- 50 Bae JS, Yang L, Manithody C, Rezaie AR. The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood 2007; 110: 3909–16.
- 51 Bae JS, Yang L, Rezaie AR. Lipid raft localization regulates the cleavage specificity of protease activated receptor 1 in endothelial cells. J Thromb Haemost 2008; 6: 954–61.
- 52 Adkison AM, Raptis SZ, Kelley DG, Pham CT. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 2002; 109: 363–71.
- 53 Hu Y, Pham CT. Dipeptidyl peptidase I regulates the development of collagen-induced arthritis. Arthritis Rheum 2005; 52: 2553–8.
- 54 Miyata J, Tani K, Sato K, Otsuka S, Urata T, Lkhagvaa B, et al. Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatol Int 2007; 27: 375–82.
- 55 Griffiths GM, Alpert S, Lambert E, McGuire J, Weissman IL. Perforin and granzyme A expression identifying cytolytic lymphocytes in rheumatoid arthritis. Proc Natl Acad Sci U S A 1992; 89: 549–53.
- 56 Nordstrom DC, Konttinen YT, Sorsa T, Nykanen P, Pettersson T, Santavirta S, et al. Granzyme A-immunoreactive cells in synovial fluid in reactive and rheumatoid arthritis. Clin Rheumatol 1992; 11: 529–32.
- 57 Young LH, Joag SV, Lin PY, Luo SF, Zheng LM, Liu CC, et al. Expression of cytolytic mediators by synovial fluid lymphocytes in rheumatoid arthritis. Am J Pathol 1992; 140: 1261–8.
- 58 Kummer JA, Tak PP, Brinkman BM, van Tilborg AA, Kamp AM, Verweij CL, et al. Expression of granzymes A and B in synovial tissue from patients with rheumatoid arthritis and osteoarthritis. Clin Immunol Immunopathol 1994; 73: 88–95.
- 59 Tak PP, Spaeny-Dekking L, Kraan MC, Breedveld FC, Froelich CJ, Hack CE. The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA). Clin Exp Immunol 1999; 116: 366–70.
- 60 Kraan MC, Haringman JJ, Weedon H, Barg EC, Smith MD, Ahern MJ, et al. T cells, fibroblast-like synoviocytes, and granzyme B+ cytotoxic cells are associated with joint damage in patients with recent onset rheumatoid arthritis. Ann Rheum Dis 2004; 63: 483–8.
- 61 Goldbach-Mansky R, Suson S, Wesley R, Hack CE, El-Gabalawy HS, Tak PP. Raised granzyme B levels are associated with erosions in patients with early rheumatoid factor positive rheumatoid arthritis. Ann Rheum Dis 2005; 64: 715–21.
- 62 Spaeny-Dekking EH, Hanna WL, Wolbink AM, Wever PC, Kummer AJ, Swaak AJ, et al. Extracellular granzymes A and B in humans: detection of native species during CTL responses in vitro and in vivo. J Immunol 1998; 160: 3610–6.
- 63 Sower LE, Froelich CJ, Allegretto N, Rose PM, Hanna WD, Klimpel GR. Extracellular activities of human granzyme A: monocyte activation by granzyme A versus α-thrombin. J Immunol 1996; 156: 2585–90.
- 64 Sower LE, Klimpel GR, Hanna W, Froelich CJ. Extracellular activities of human granzymes. I. Granzyme A induces IL6 and IL8 production in fibroblast and epithelial cell lines. Cell Immunol 1996; 171: 159–63.
- 65 Smeets TJ, Kraan MC, Galjaard S, Youssef PP, Smith MD, Tak PP. Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage-pannus junction in patients with RA. Ann Rheum Dis 2001; 60: 561–5.
- 66 Ronday HK, van der Laan WH, Tak PP, de Roos JA, Bank RA, TeKoppele JM, et al. Human granzyme B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. Rheumatology (Oxford) 2001; 40: 55–61.
- 67 Horiuchi K, Saito S, Sasaki R, Tomatsu T, Toyama Y. Expression of granzyme B in human articular chondrocytes. J Rheumatol 2003; 30: 1799–810.
- 68 Froelich CJ, Zhang X, Turbov J, Hudig D, Winkler U, Hanna WL. Human granzyme B degrades aggrecan proteoglycan in matrix synthesized by chondrocytes. J Immunol 1993; 151: 7161–71.
- 69 Buzza MS, Zamurs L, Sun J, Bird CH, Smith AI, Trapani JA, et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 2005; 280: 23549–58.
- 70 Nigrovic PA, Lee DM. Synovial mast cells: role in acute and chronic arthritis [review]. Immunol Rev 2007; 217: 19–37.
- 71 Gotis-Graham I, McNeil HP. Mast cell responses in rheumatoid synovium: association of the MCTC subset with matrix turnover and clinical progression. Arthritis Rheum 1997; 40: 479–89.
- 72 Tetlow LC, Woolley DE. Distribution, activation and tryptase/chymase phenotype of mast cells in the rheumatoid lesion. Ann Rheum Dis 1995; 54: 549–55.
- 73 Caughey GH. Mast cell tryptases and chymases in inflammation and host defense [review]. Immunol Rev 2007; 217: 141–54.
- 74 Kido H, Fukusen N, Katunuma N, Morita T, Iwanaga S. Tryptase from rat mast cells converts bovine prothrombin to thrombin. Biochem Biophys Res Commun 1985; 132: 613–9.
- 75 Schwartz LB, Kawahara MS, Hugli TE, Vik D, Fearon DT, Austen KF. Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase. J Immunol 1983; 130: 1891–5.
- 76 Huang C, Wong GW, Ghildyal N, Gurish MF, Sali A, Matsumoto R, et al. The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity in vivo and in vitro due to its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. J Biol Chem 1997; 272: 31885–93.
- 77 Schwartz LB, Bradford TR, Littman BH, Wintroub BU. The fibrinogenolytic activity of purified tryptase from human lung mast cells. J Immunol 1985; 135: 2762–7.
- 78 Fajardo I, Pejler G. Human mast cell β-tryptase is a gelatinase. J Immunol 2003; 171: 1493–9.
- 79 Lohi J, Harvima I, Keski-Oja J. Pericellular substrates of human mast cell tryptase: 72,000 dalton gelatinase and fibronectin. J Cell Biochem 1992; 50: 337–49.
- 80 Gruber BL, Schwartz LB, Ramamurthy NS, Irani AM, Marchese MJ. Activation of latent rheumatoid synovial collagenase by human mast cell tryptase. J Immunol 1988; 140: 3936–42.
- 81 Lees M, Taylor DJ, Woolley DE. Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. Eur J Biochem 1994; 223: 171–7.
- 82 Tchougounova E, Lundequist A, Fajardo I, Winberg JO, Abrink M, Pejler G. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 2005; 280: 9291–6.
- 83 Fang KC, Raymond WW, Blount JL, Caughey GH. Dog mast cell α-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. J Biol Chem 1997; 272: 25628–35.
- 84 Suzuki K, Lees M, Newlands GF, Nagase H, Woolley DE. Activation of precursors for matrix metalloproteinases 1 (interstitial collagenase) and 3 (stromelysin) by rat mast-cell proteinases I and II. Biochem J 1995; 305(Pt 1): 301–6.
- 85 Stack MS, Johnson DA. Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem 1994; 269: 9416–9.
- 86 Nakano S, Mishiro T, Takahara S, Yokoi H, Hamada D, Yukata K, et al. Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin Rheumatol 2007; 26: 1284–92.
- 87 Palmer HS, Kelso EB, Lockhart JC, Sommerhoff CP, Plevin R, Goh FG, et al. Protease-activated receptor 2 mediates the proinflammatory effects of synovial mast cells. Arthritis Rheum 2007; 56: 3532–40.
- 88 Masuko K, Murata M, Xiang Y, Nakamura H, Yudoh K, Nishioka K, et al. Tryptase enhances release of vascular endothelial growth factor from human osteoarthritic chondrocytes. Clin Exp Rheumatol 2007; 25: 860–5.
- 89 Murwantoko, Yano M, Ueta Y, Murasaki A, Kanda H, Oka C, et al. Binding of proteins to the PDZ domain regulates proteolytic activity of HtrA1 serine protease. Biochem J 2004; 381(Pt 3): 895–904.
- 90 Vande Walle L, Lamkanfi M, Vandenabeele P. The mitochondrial serine protease HtrA2/Omi: an overview [review]. Cell Death Differ 2008; 15: 453–60.
- 91 Chien J, Staub J, Hu SI, Erickson-Johnson MR, Couch FJ, Smith DI, et al. A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene 2004; 23: 1636–44.
- 92 Baldi A, De Luca A, Morini M, Battista T, Felsani A, Baldi F, et al. The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene 2002; 21: 6684–8.
- 93 Bowden MA, Di Nezza-Cossens LA, Jobling T, Salamonsen LA, Nie G. Serine proteases HTRA1 and HTRA3 are down-regulated with increasing grades of human endometrial cancer. Gynecol Oncol 2006; 103: 253–60.
- 94 Narkiewicz J, Klasa-Mazurkiewicz D, Zurawa-Janicka D, Skorko-Glonek J, Emerich J, Lipinska B. Changes in mRNA and protein levels of human HtrA1, HtrA2 and HtrA3 in ovarian cancer. Clin Biochem 2008; 41: 561–9.
- 95 Bakay M, Zhao P, Chen J, Hoffman EP. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscul Disord 2002; 12 Suppl 1: S125–41.
- 96 Grau S, Baldi A, Bussani R, Tian X, Stefanescu R, Przybylski M, et al. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc Natl Acad Sci U S A 2005; 102: 6021–6.
- 97 Hu SI, Carozza M, Klein M, Nantermet P, Luk D, Crowl RM. Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage. J Biol Chem 1998; 273: 34406–12.
- 98 Wu J, Liu W, Bemis A, Wang E, Qiu Y, Morris EA, et al. Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum 2007; 56: 3675–84.
- 99 Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, et al. The role of human HtrA1 in arthritic disease. J Biol Chem 2006; 281: 6124–9.
- 100 Tocharus J, Tsuchiya A, Kajikawa M, Ueta Y, Oka C, Kawaichi M. Developmentally regulated expression of mouse HtrA3 and its role as an inhibitor of TGF-β signaling. Dev Growth Differ 2004; 46: 257–74.
- 101 Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, Kawaichi M, et al. Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 2005; 37: 323–36.
- 102 Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, et al. HtrA1 serine protease inhibits signaling mediated by Tgfβ family proteins. Development 2004; 131: 1041–53.
- 103 Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 2001; 153: 35–46.
- 104 Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-β and osteoarthritis. Osteoarthritis Cartilage 2007; 15: 597–604.
- 105 Hadfield KD, Rock CF, Inkson CA, Dallas SL, Sudre L, Wallis GA, et al. HtrA1 inhibits mineral deposition by osteoblasts: requirement for the protease and PDZ domains. J Biol Chem 2008; 283: 5928–38.
- 106 Maes MB, Scharpe S, De Meester I. Dipeptidyl peptidase II (DPPII), a review [review]. Clin Chim Acta 2007; 380: 31–49.
- 107 Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH. The role of CD26/dipeptidyl peptidase IV in cancer. Front Biosci 2008; 13: 1634–45.
- 108 O'Brien P, O'Connor BF. Seprase: an overview of an important matrix serine protease. Biochim Biophys Acta 2008; 1784: 1130–45.
- 109 Wang XM, Yao TW, Nadvi NA, Osborne B, McCaughan GW, Gorrell MD. Fibroblast activation protein and chronic liver disease. Front Biosci 2008; 13: 3168–80.
- 110 Deacon CF, Carr RD, Holst JJ. DPP-4 inhibitor therapy: new directions in the treatment of type 2 diabetes. Front Biosci 2008; 13: 1780–94.
- 111 McIntosh CH. Dipeptidyl peptidase IV inhibitors and diabetes therapy. Front Biosci 2008; 13: 1753–73.
- 112 Thielitz A, Ansorge S, Bank U, Tager M, Wrenger S, Gollnick H, et al. The ectopeptidases dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN) and their related enzymes as possible targets in the treatment of skin diseases. Front Biosci 2008; 13: 2364–75.
- 113 Sedo A, Duke-Cohan JS, Balaziova E, Sedova LR. Dipeptidyl peptidase IV activity and/or structure homologs: contributing factors in the pathogenesis of rheumatoid arthritis? Arthritis Res Ther 2005; 7: 253–69.
- 114 Ohnuma K, Takahashi N, Yamochi T, Hosono O, Dang NH, Morimoto C. Role of CD26/dipeptidyl peptidase IV in human T cell activation and function. Front Biosci 2008; 13: 2299–310.
- 115 Bathon JM, Proud D, Mizutani S, Ward PE. Cultured human synovial fibroblasts rapidly metabolize kinins and neuropeptides. J Clin Invest 1992; 90: 981–91.
- 116 Lapadula G, Iannone F, Zuccaro C, Covelli M, Patella V, Lobianco G, et al. Expression of membrane-bound peptidases (CD10 and CD26) on human articular chondrocytes: possible role of neuropeptidases in the pathogenesis of osteoarthritis. Clin Exp Rheumatol 1995; 13: 143–8.
- 117 Gotoh H, Hagihara M, Nagatsu T, Iwata H, Miura T. Activities of dipeptidyl peptidase II and dipeptidyl peptidase IV in synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Clin Chem 1989; 35: 1016–8.
- 118 Kamori M, Hagihara M, Nagatsu T, Iwata H, Miura T. Activities of dipeptidyl peptidase II, dipeptidyl peptidase IV, prolyl endopeptidase, and collagenase-like peptidase in synovial membrane from patients with rheumatoid arthritis and osteoarthritis. Biochem Med Metab Biol 1991; 45: 154–60.
- 119 Solau-Gervais E, Zerimech F, Lemaire R, Fontaine C, Huet G, Flipo RM. Cysteine and serine proteases of synovial tissue in rheumatoid arthritis and osteoarthritis. Scand J Rheumatol 2007; 36: 373–7.
- 120 Tanaka S, Murakami T, Nonaka N, Ohnuki T, Yamada M, Sugita T. Anti-arthritic effects of the novel dipeptidyl peptidase IV inhibitors TMC-2A and TSL-225. Immunopharmacology 1998; 40: 21–6.
- 121 Tanaka S, Murakami T, Horikawa H, Sugiura M, Kawashima K, Sugita T. Suppression of arthritis by the inhibitors of dipeptidyl peptidase IV. Int J Immunopharmacol 1997; 19: 15–24.
- 122 Busso N, Wagtmann N, Herling C, Chobaz-Peclat V, Bischof-Delaloye A, So A, et al. Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol 2005; 166: 433–42.
- 123 Kanbe K, Takagishi K, Chen Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell–derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 2002; 46: 130–7.
- 124 Kanbe K, Takemura T, Takeuchi K, Chen Q, Takagishi K, Inoue K. Synovectomy reduces stromal-cell-derived factor-1 (SDF-1) which is involved in the destruction of cartilage in osteoarthritis and rheumatoid arthritis. J Bone Joint Surg Br 2004; 86: 296–300.
- 125 Chiu YC, Yang RS, Hsieh KH, Fong YC, Way TD, Lee TS, et al. Stromal cell-derived factor-1 induces matrix metalloprotease-13 expression in human chondrocytes. Mol Pharmacol 2007; 72: 695–703.
- 126 Hildebrandt M, Schabath R. SDF-1 (CXCL12) in haematopoiesis and leukaemia: impact of DPP IV/CD26. Front Biosci 2008; 13: 1774–9.
- 127 Wei L, Sun X, Kanbe K, Wang Z, Sun C, Terek R, et al. Chondrocyte death induced by pathological concentration of chemokine stromal cell-derived factor-1. J Rheumatol 2006; 33: 1818–26.
- 128 Proost P, De Meester I, Schols D, Struyf S, Lambeir AM, Wuyts A, et al. Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV: conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1-infection. J Biol Chem 1998; 273: 7222–7.
- 129 Gonzalez-Gronow M, Kaczowka S, Gawdi G, Pizzo SV. Dipeptidyl peptidase IV (DPP IV/CD26) is a cell-surface plasminogen receptor. Front Biosci 2008; 13: 1610–8.
- 130 Sulda ML, Abbott CA, Hildebrandt M. DPIV/CD26 and FAP in cancer: a tale of contradictions [review]. Adv Exp Med Biol 2006; 575: 197–206.
- 131 Collins PJ, McMahon G, O'Brien P, O'Connor B. Purification, identification and characterisation of seprase from bovine serum. Int J Biochem Cell Biol 2004; 36: 2320–33.
- 132 Lee KN, Jackson KW, Christiansen VJ, Lee CS, Chun JG, McKee PA. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006; 107: 1397–404.
- 133 Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A 1990; 87: 7235–9.
- 134 Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM, Muller E, et al. Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 1999; 29: 1768–78.
- 135 Acharya PS, Zukas A, Chandan V, Katzenstein AL, Pure E. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 2006; 37: 352–60.
- 136 Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res 2003; 9: 1639–47.
- 137 Milner JM, Kevorkian L, Young DA, Jones D, Wait R, Donell ST, et al. Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Res Ther 2006; 8: R23.
- 138 Bauer S, Jendro MC, Wadle A, Kleber S, Stenner F, Dinser R, et al. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res Ther 2006; 8: R171.
- 139 Nzeusseu Toukap A, Galant C, Theate I, Maudoux AL, Lories RJ, Houssiau FA, et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum 2007; 56: 1579–88.
- 140 Ibrahim SM, Koczan D, Thiesen HJ. Gene-expression profile of collagen-induced arthritis. J Autoimmun 2002; 18: 159–67.
- 141 Cheng HC, Abdel-Ghany M, Elble RC, Pauli BU. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem 1998; 273: 24207–15.
- 142 Ghersi G, Dong H, Goldstein LA, Yeh Y, Hakkinen L, Larjava HS, et al. Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem 2002; 277: 29231–41.
- 143 Ghersi G, Zhao Q, Salamone M, Yeh Y, Zucker S, Chen WT. The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res 2006; 66: 4652–61.
- 144 Kelly T. Fibroblast activation protein-α and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat 2005; 8: 51–8.
- 145 Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease [review]. Nat Rev Mol Cell Biol 2002; 3: 753–66.
- 146 Bassi DE, Fu J, Lopez de Cicco R, Klein-Szanto AJ. Proprotein convertases: “master switches” in the regulation of tumor growth and progression [review]. Mol Carcinog 2005; 44: 151–61.
- 147 Moldovan F, Pelletier JP, Mineau F, Dupuis M, Cloutier JM, Martel-Pelletier J. Modulation of collagenase 3 in human osteoarthritic cartilage by activation of extracellular transforming growth factor β: role of furin convertase. Arthritis Rheum 2000; 43: 2100–9.
- 148 Milner JM, Rowan AD, Elliott SF, Cawston TE. Inhibition of furin-like enzymes blocks interleukin-1α/oncostatin M–stimulated cartilage degradation. Arthritis Rheum 2003; 48: 1057–66.
- 149 Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M. Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett 1996; 393: 101–4.
- 150 Flannery CR. MMPs and ADAMTSs: functional studies [review]. Front Biosci 2006; 11: 544–69.
- 151 Srour N, Lebel A, McMahon S, Fournier I, Fugere M, Day R, et al. TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett 2003; 554: 275–83.
- 152 Assi LK, Wong SH, Ludwig A, Raza K, Gordon C, Salmon M, et al. Tumor necrosis factor α activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis Rheum 2007; 56: 1776–86.
- 153 Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R. Processing of transforming growth factor β 1 precursor by human furin convertase. J Biol Chem 1995; 270: 10618–24.
- 154 Yamanishi Y, Boyle DL, Clark M, Maki RA, Tortorella MD, Arner EC, et al. Expression and regulation of aggrecanase in arthritis: the role of TGF-β. J Immunol 2002; 168: 1405–12.
- 155 Hui W, Rowan AD, Cawston T. Insulin-like growth factor 1 blocks collagen release and down regulates matrix metalloproteinase-1, -3, -8, and -13 mRNA expression in bovine nasal cartilage stimulated with oncostatin M in combination with interleukin 1α. Ann Rheum Dis 2001; 60: 254–61.
- 156 Hui W, Cawston T, Rowan AD. Transforming growth factor β 1 and insulin-like growth factor 1 block collagen degradation induced by oncostatin M in combination with tumour necrosis factor α from bovine cartilage. Ann Rheum Dis 2003; 62: 172–4.
- 157 Busso N, Frasnelli M, Feifel R, Cenni B, Steinhoff M, Hamilton J, et al. Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum 2007; 56: 101–7.
- 158 Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, et al. Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 2003; 111: 35–41.
- 159 McIntosh KA, Plevin R, Ferrell WR, Lockhart JC. The therapeutic potential of proteinase-activated receptors in arthritis [review]. Curr Opin Pharmacol 2007; 7: 334–8.
- 160 Boileau C, Amiable N, Martel-Pelletier J, Fahmi H, Duval N, Pelletier JP. Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther 2007; 9: R121.
- 161 Johansson U, Lawson C, Dabare M, Syndercombe-Court D, Newland AC, Howells GL, et al. Human peripheral blood monocytes express protease receptor-2 and respond to receptor activation by production of IL-6, IL-8, and IL-1β. J Leukoc Biol 2005; 78: 967–75.
- 162 Xiang Y, Masuko-Hongo K, Sekine T, Nakamura H, Yudoh K, Nishioka K, et al. Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1β, TNF-α and TGF-β. Osteoarthritis Cartilage 2006; 14: 1163–73.
- 163 Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A, et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 1997; 272: 4043–9.
- 164 Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI, et al. Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 2006; 281: 32095–112.
- 165 Uehara A, Sugawara S, Muramoto K, Takada H. Activation of human oral epithelial cells by neutrophil proteinase 3 through protease-activated receptor-2. J Immunol 2002; 169: 4594–603.
- 166 Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 2000; 275: 26333–42.
- 167 Morris R, Winyard PG, Blake DR, Morris CJ. Thrombin in inflammation and healing: relevance to rheumatoid arthritis. Ann Rheum Dis 1994; 53: 72–9.
- 168 Yang YH, Hall P, Little CB, Fosang AJ, Milenkovski G, Santos L, et al. Reduction of arthritis severity in protease-activated receptor–deficient mice. Arthritis Rheum 2005; 52: 1325–32.
- 169 Mackie EJ, Loh LH, Sivagurunathan S, Uaesoontrachoon K, Yoo HJ, Wong D, et al. Protease-activated receptors in the musculoskeletal system. Int J Biochem Cell Biol 2008; 40: 1169–84.
- 170 Hirano F, Kobayashi A, Hirano Y, Nomura Y, Fukawa E, Makino I. Thrombin-induced expression of RANTES mRNA through protease activated receptor-1 in human synovial fibroblasts. Ann Rheum Dis 2002; 61: 834–7.
- 171 Wiedow O, Meyer-Hoffert U. Neutrophil serine proteases: potential key regulators of cell signalling during inflammation [review]. J Intern Med 2005; 257: 319–28.
- 172 Hou J, Clemmons DR, Smeekens S. Expression and characterization of a serine protease that preferentially cleaves insulin-like growth factor binding protein-5. J Cell Biochem 2005; 94: 470–84.
- 173 Booth BA, Boes M, Bar RS. IGFBP-3 proteolysis by plasmin, thrombin, serum: heparin binding, IGF binding, and structure of fragments. Am J Physiol 1996; 271(3 Pt 1): E465–70.
- 174 Gibson TL, Cohen P. Inflammation-related neutrophil proteases, cathepsin G and elastase, function as insulin-like growth factor binding protein proteases. Growth Horm IGF Res 1999; 9: 241–53.
- 175 Fu X, Parks WC, Heinecke JW. Activation and silencing of matrix metalloproteinases [review]. Semin Cell Dev Biol 2008; 19: 2–13.
- 176 Milner JM, Elliott SF, Cawston TE. Activation of procollagenases is a key control point in cartilage collagen degradation: interaction of serine and metalloproteinase pathways. Arthritis Rheum 2001; 44: 2084–96.
- 177 Milner JM, Rowan AD, Cawston TE, Young DA. Metalloproteinase and inhibitor expression profiling of resorbing cartilage reveals pro-collagenase activation as a critical step for collagenolysis. Arthritis Res Ther 2006; 8: R142.
- 178 Van der Zee E, Everts V, Beertsen W. Cytokine-induced endogenous procollagenase stored in the extracellular matrix of soft connective tissue results in a burst of collagen breakdown following its activation. J Periodontal Res 1996; 31: 483–8.
- 179 Birkedal-Hansen H, Lin HY, Birkedal-Hansen B, Windsor LJ, Pierson MC. Degradation of collagen fibrils by live cells: role of expression and activation of procollagenase. Matrix Suppl 1992; 1: 368–74.
- 180 Van Lent PL, Holthuysen AE, Sloetjes A, Lubberts E, van den Berg WB. Local overexpression of adeno-viral IL-4 protects cartilage from metallo proteinase-induced destruction during immune complex-mediated arthritis by preventing activation of pro-MMPs. Osteoarthritis Cartilage 2002; 10: 234–43.
- 181 Collier S, Ghosh P. The role of plasminogen in interleukin-1 mediated cartilage degradation. J Rheumatol 1988; 15: 1129–37.
- 182 Gavrilovic J, Murphy G. The role of plasminogen in cell-mediated collagen degradation [review]. Cell Biol Int Rep 1989; 13: 367–75.
- 183 Van der Laan WH, Pap T, Ronday HK, Grimbergen JM, Huisman LG, TeKoppele JM, et al. Cartilage degradation and invasion by rheumatoid synovial fibroblasts is inhibited by gene transfer of a cell surface–targeted plasmin inhibitor. Arthritis Rheum 2000; 43: 1710–8.
- 184 Murphy G, Cockett MI, Stephens PE, Smith BJ, Docherty AJ. Stromelysin is an activator of procollagenase: a study with natural and recombinant enzymes. Biochem J 1987; 248: 265–8.
- 185 Knauper V, Wilhelm SM, Seperack PK, DeClerck YA, Langley KE, Osthues A, et al. Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem J 1993; 295(Pt 2): 581–6.
- 186 Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem 1996; 271: 1544–50.
- 187 Nagase H, Suzuki K, Morodomi T, Enghild JJ, Salvesen G. Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3. Matrix Suppl 1992; 1: 237–44.
- 188 Van Meurs J, van Lent P, Stoop R, Holthuysen A, Singer I, Bayne E, et al. Cleavage of aggrecan at the Asn 341–Phe 342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arthritis Rheum 1999; 42: 2074–84.
- 189 Okada Y, Harris ED Jr, Nagase H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts: purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem J 1988; 254: 731–41.
- 190 Moilanen M, Sorsa T, Stenman M, Nyberg P, Lindy O, Vesterinen J, et al. Tumor-associated trypsinogen-2 (trypsinogen-2) activates procollagenases (MMP-1, -8, -13) and stromelysin-1 (MMP-3) and degrades type I collagen. Biochemistry 2003; 42: 5414–20.
- 191 Fang Q, Liu X, Al-Mugotir M, Kobayashi T, Abe S, Kohyama T, et al. Thrombin and TNF-α/IL-1β synergistically induce fibroblast-mediated collagen gel degradation. Am J Respir Cell Mol Biol 2006; 35: 714–21.
- 192 Jin X, Yagi M, Akiyama N, Hirosaki T, Higashi S, Lin CY, et al. Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 2006; 97: 1327–34.
- 193 Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis 2008; 12: 361–7.
- 194 Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH, et al. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer [review]. Cancer Metastasis Rev 2003; 22: 237–58.
- 195 Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, Tanzer M, et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum 2002; 46: 2087–94.