Vasoactive intestinal peptide-immunoreactive nerves in the rat kidney
David S. Knight
Department of Anatomy, School of Medicine, Louisiana State University, Shreveport, LA 71130
Search for more papers by this authorJohn A. Beal
Department of Anatomy, School of Medicine, Louisiana State University, Shreveport, LA 71130
Search for more papers by this authorZhi Ping Yuan
Department of Anatomy, School of Medicine, Louisiana State University, Shreveport, LA 71130
Search for more papers by this authorTimothy S. Fournet
Department of Anatomy, School of Medicine, Louisiana State University, Shreveport, LA 71130
Search for more papers by this authorDavid S. Knight
Department of Anatomy, School of Medicine, Louisiana State University, Shreveport, LA 71130
Search for more papers by this authorJohn A. Beal
Department of Anatomy, School of Medicine, Louisiana State University, Shreveport, LA 71130
Search for more papers by this authorZhi Ping Yuan
Department of Anatomy, School of Medicine, Louisiana State University, Shreveport, LA 71130
Search for more papers by this authorTimothy S. Fournet
Department of Anatomy, School of Medicine, Louisiana State University, Shreveport, LA 71130
Search for more papers by this authorAbstract
An indirect immunohistochemical method in which an avidin-biotinylated horseradish peroxidase complex is bound to the secondary antibody was used to visualize vasoactive intestinal peptide-immunoreactive (VIPI) nerves in the rat kidney. Rats were perfused with 4% paraformaldehyde or 2% paraformaldehyde + 0.15% picric acid in 0.1 M phosphate buffer, then transferred to the buffer. After 24–48 hours, the kidneys were sectioned with a Vibratome at 200 or 300 μm and incubated in the primary antiserum for 18 hours at room temperature. A sparse plexus of VIPI nerves innervates the rat renal calyx. Some VIPI nerves innervate interlobar arteries and each succeeding segment of the arterial tree including afferent arterioles, but most innervate arcuate and interlobular arteries. VIPI axons do not innervate each arcuate artery or each interlobular branch of an arcuate artery with equal density. Although some axons follow each interlobular branch, most form a dense plexus on only one or two branches. Therefore, most VIPI nerves in the rat kidney innervate a restricted segment of the renal arterial tree. These nerves may be efferent and may selectively dilate arcuate and smaller arteries, or they may be afferent and may sense local changes in mechanical or chemical parameters.
Literature Cited
- Aars, H., and S. Akre (1970) Reflex changes in sympathetic activity and arterial blood pressure evoked by afferent stimulation of the renal nerve. Acta Physiol. Scand., 78: 184–188.
- Alm, P., J. Alumets, R. Hakanson, Ch. Owman, N.-O. Sjoberg, F. Sundler, and B. Walles (1980) Origin and distribution of VIP (vasoactive intestinal polypeptide) nerves in the genito-urinary tract. Cell Tissue Res., 205: 337–347.
- Astrom, A., and J. Craaford (1967) Afferent activity recorded in the kidney nerves of rats. Acta Physiol. Scand., 70: 10–15.
- Barajas, L., and P. Wang (1978) Myelinated nerves of the rat kidney. J. Ultrastruct. Res,. 65: 148–162.
- Barajas, L., P. Wang, and S. DeSantis (1976) Light and electron microscopic localization of acetylcholinesterase activity in the rat renal nerves. Am. J. Anat., 147: 219–234.
- Barajas, L., K. N. Sokolski, and J. Lechago (1983) Vasoactive intestinal polypeptide-immunoreactive nerves in the kidney. Neurosci. Lett., 43: 263–260.
- Bennett, M. R. (1972) Autonomic Neuromuscular Transmission. Cambridge University Press, London.
- Bradford, H. F. (1986) Chemical Neurobiology. W. H. Freeman, New York.
- Calam, J., R. Dimaline, W. S. Peart, and R. J. Unwin (1982) Vasoactive intestinal polypeptide (VIP) and renin release in the conscious rabbit. J. Physiol. (Lond.), 329: 66p.
- Calaresu, F. R., and J. Ciriello (1981a) Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat. J. A. N. S., 3: 314–320.
- Calaresu, F. R., and J. Ciriello (1981b) Altered concentration of catecholamines in the hypothalamus of the rat after renal denervation. Can. J. Physiol. Pharmacol., 59: 1274–1277.
-
Calaresu, F. R.,
A. Stella, and
A. Zanchetti
(1976)
Haemodynamic responses and renin release during stimulation of afferent renal nerves in the cat.
J. Physiol. (Lond.),
255:
187–700.
10.1113/jphysiol.1976.sp011303 Google Scholar
- Colindres, R. E., W. S. Spielman, N. G. Moss, W. W. Harrington, and C. W. Gottschalk (1980) Functional evidence for renorenal reflexes in the cat. Am. J. Physiol., 239: F265–270.
- Costa, M., and J. B. Furness (1982) The origins, pathways and termination of nerves with VIP-like immunoreactivity in the guinea-pig small intestine. Neuroscience 8: 665–676.
- Cowen, T., A. J. Haven, C. Wen-Qin, D. D. Gallen, F. Franc, and G. Burnstock (1982) Development and aging of perivascular adrenergic nerves in the rabbit. A quantitative fluorescence histo-chemical study using image analysis. J. A. N. S., 5: 317–336.
- Dalsgaard, C.-J., T. Hökfelt, M. Schultzberg, J. M. Lundberg, L. Terenius, G. J. Dockeray, and M. Goldstein (1983) Origin of peptide-containing fibers in the inferior mesenteric ganglion of the guineapig: Immunohistochemical studies with antisera to substance P, enkephalin, vasoactive intestinal polypeptide, cholecystokinin and bombesin. Neuroscience, 9: 191–211.
- Della, N. G., R. E. Papka, J. B. Furness, and M. Costa (1983) Vasoactive intestinal peptide-like immunoreactivity in nerves associated with the cardiovascular system of guinea-pigs. Neuroscience, 9: 605–619.
- Dhall, U., T. Cowen, A. J. Haven, and G. Burnstock (1986) Perivascular noradrenergic and peptide-containing nerves show different patterns of changes during development and aging in the guinea pig. J. A. N. S., 16: 109–126.
- DiBona, G. F. (1982) The functions of the renal nerves. Rev. Physiol. Biochem. Pharmacol., 94: 75–181.
- Dolezel, S. (1975) The connective tissue skeleton in the mammalian kidney and its innervation. Acta Anat. (Basel), 93: 194–209.
- Dun, N. J. (1983) Peptide hormones and transmission in sympathetic ganglia. In: Autonomic Ganglia. L.-G. Elfvin, ed. John Wiley and Sons, Chichester, pp. 345–366.
- Eklund, S., M. Jodal, O. Lundgren, and A. Sjogvist (1979) Effects of vasoactive intestinal polypteptide on blood flow, motility and fluid transport in the gastrointestinal tract of the cat. Acta Physiol. Scand., 105: 461–468.
- Elfvin, L.-G. (1980) Morphological studies on central and peripheral connections of sympathetic ganglia. In: Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells and Paraneurons. O. Eranko, S. Soninila, and H. Paivarinata, eds. Raven Press, New York, pp. 335–340.
- Fahrenkrug, J. (1979) Vasoactive intestinal polypeptide: measurement, distribution and putative neurotransmitter function. Digestion, 19: 149–169.
- Fahrenkrug, J. (1982) VIP as a neurotransmitter in the peripheral nervous system. In: Vasoactive Intestinal Peptide: Advances in Peptide Hormone Research Series. Sami I. Said, ed. Raven Press, New York, pp 361–372.
- Farr, A. G., and P. K. Nakane (1981) Immunohistochemistry with enzyme labeled antibodies: A brief review. J. Immunol. Methods, 47: 129–144.
- Ferguson, M., and C. Bell (1985) Substance P-immunoreactive nerves in the rat kidney. Neurosci. Lett., 60: 183–188.
- Forssman, W. G., D. Hock, and J. Meta (1982) Peptidergic innervation of the kidney. Neurosci. Lett., 10: S183.
- Gallen, D. D., T. Cowen, S. G. Griffith, A. J. Haven, and G. Burnstock (1982) Functional and nonfunctional nerve-smooth muscle transmission in the renal arteries of the newborn and adult rabbit and guinea pig. Blood Vessels, 19: 237–246.
- Hakanson, R., F. Sundler, and R. Uddman (1982) Distribution and topography of peripheral VIP nerve fibers: Functional implications. In Vasoactive Intestinal Peptide: Advances in Peptide Hormone Research Series. S. I. Said, ed. Raven Press, New York, pp. 121–144.
- Heistad, D. D., M. L. Marcus, S. I. Said, and P. M. Gross (1980) Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am. J. Physiol., 239: H73–H80.
- Hökfelt, T., M. Schultzberg, R. Elde, G. Nilsson, L. Terenius, S. Said, and M. Goldstein (1978) Peptide neurons in peripheral tissues including the urinary tract: Immunohistochemical studies. Acta Pharmacol. Toxicol. (Copenh.), 43: 79–89.
- Honda, C. N., M. Rethelyi, and P. Petrusz (1983) Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: Light and electron microscopic observations. J. Neurosci., 3: 2183–2196.
- Hsu, S.-M., L. Raine, and H. Fanger (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem., 29: 577–580.
- Jarhult, J., P. Helstrang, and F. Sundler (1980) Immunohistochemical localization and vascular effects of vasoactive intestinal polypeptide in skeletal muscle of the cat. Cell Tissue Res., 207: 55–64.
- Katholi, R. E., G. R. Hageman, P. L. Whitlow, and W. T. Woods (1983) Hemodynamic and afferent renal nerve responses to intrarenal adenosine in the dog. Hypertension 5 (Suppl. I): 149–154.
- Kawatani, M., I. P. Lowe, I. Nadelhaft, C. Morgan, and W. C. DeGroat (1983) Vasoactive intestinal polypeptide in visceral afferent pathways to the sacral spinal cord of the cat. Neurosci. Lett., 42: 311–316.
- Krieger, D. T. (1983) Brain peptides: What, where and why. Science 222: 975–985.
- Kuo, D. C., J. J. Oravitz, R. Eskay, and W. C. DeGroat (1984) Substance P in renal afferent perikarya identified by retrograde transport of fluorescent dye. Brain Res., 323: 168–171.
- Larsson, L. I., J. Fahrenkrug, and O. B. Schaffalitzky de Muckadell (1977) Vasoactive intestinal polypeptide occurs in nerves of the female genitourinary tract. Science, 197: 1374–1375.
- Leah, J. D., A. A. Cameron, and P. J. Snow (1985) Neuropeptides in physiologically identified mammalian sensory neurones. Neurosci. Lett., 56: 257–263.
- Ljungqvist, A., and J. Wagermark (1970) The adrenergic innervation of intrarenal glomerular and extra glomerular circulatory routes. Nephron, 7: 218–229.
- Lorén, I., P. C. Emson, J. Fahrenkrug, A. Bjorklund, J. Alumets, R. Hakanson, and F. Sundler (1979) Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience, 4: 1953–1976.
- Lundberg, J. M., T. Hökfelt, M. Schultzberg, G. Norell, K. Uvnas-Wallensten, L. Terrenius, A. Dahlstrom, J. F. Rehfeld, and S. Said (1978) Pathways of peripheral peptide neurons with reference to the vagus nerve. Neurosci. Lett. [Suppl.], 1: 224.
- Lundberg, J. M., T. Hökfelt, J. Fahrenkrug, G. Nilsson, and L. Terenius (1979a) Peptides in the cat carotid body (glomus caroticum): VIP-, enkephalin-, and substance P-like immunoreactivity. Acta Physiol. Scand., 107: 279–281.
- Lundberg, J. M., T. Hökfelt, M. Schultzberg, K. Uvnas-Wallensten, C. Kohler, and S. I. Said (1979b) Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: Evidence from combined immunohistochemistry and acetylcholinesterase staining. Neuroscience, 4: 1539–1559.
- Lundberg, J. M., A. Anggard, J. Fahrenkrug, O. Johansson, and T. Hökfelt (1982) Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands. In Vasoactive Intestinal Peptide: Advances in Peptide Hormone Research Series. S. I. Said, ed. Raven Press, New York, pp. 373–389.
- McKenna, O. C., and E. T. Angelakos (1968) Adrenergic innervation of the canine kidney. Circ. Res., 22: 345–354.
- Polak, J. M., and S. R. Bloom (1982) Distribution and tissue localization of VIP in the central nervous system and in seven peripheral organs. In: Vasoactive Intestinal Peptide: Advances in Peptide Hormone Research Series. S. I. Said, ed. Raven Press, New York, pp. 107–120.
- Porter, J. P., and W. F. Ganong (1982) Relation of vasoactive intestinal polypeptide to renin secretion. In: Vasoactive Intestinal Peptide: Advances in Peptide Hormone Research Series. S. I. Said, ed. Raven Press, New York, pp. 285–297.
- Recordati, G., S. Genovesi, and D. Cerati (1982) Renorenal reflexes in the cat elicited stimulation of renal chemoreceptors. J. A. N. S., 6: 127–142.
- Rosa, R. M., P. Silva, J. S. Stoff, and F. H. Epstein (1985) Effect of vasoactive intestinal peptide on isolated perfused rat kidney. Am. J. Physiol., 249: E494–E497.
- Said, S. I. (1982) Vasodilator action of VIP: introduction and general consideration. In: Vasoactive Intestinal Peptide: Advances in Peptide Hormone Research Series. S. I. Said, ed. Raven Press, New York, pp 145–148.
- Salt, T. E., and R. G. Hill (1983) Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience, 10: 1083–1103.
- Schultzberg, M., T. Hökfelt, and J. M. Lundberg (1980) Peptide neurons in the autonomic nervous system. In: Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells and Paraneurons. O. Eranko, S. Soninila, and H. Paivarinata, eds. Raven Press, New York, pp. 341–348.
- Shimizu, T., and N. Taira (1979) Assessment of the effects of vasoactive intestinal peptide (VIP) on blood flow through and salivation of the dog salivary gland in comparison with those of secretin, glucagon and acetylcholine. Br. J. Pharmacol., 65: 683–687.
- Su, H. C., J. Wharton, J. M. Polak, P. K. Mulderry, M. A. Ghatei, S. J. Gibson, G. Terenghi, J. F. B. Morrison, J. Ballesta, and S. R. Bloom (1986) Calcitonin gene-related peptide immunoreactivity in afferent neurons supplying the urinary tract combined retrograde tracing and immunohistochemistry. Neuroscience, 18: 727–747.
- Tuchscherer, M. M., and V. S. Seybold (1985) Immunohistochemical studies of substance P, cholecystokinin-octapeptide and somatostatin in dorsal root ganglia of the rat. Neuroscience, 14: 593–605.
- Uddman, R., J. Alumets, L. Edvinsson, R. Hakanson, and F. Sundler (1981) VIP nerve fibres around peripheral blood vessels. Acta Physiol. Scand., 112: 65–70.