Active Bio-Nanocomposite Films Based on PVA Filled With CNC and Bio-Active Extract From Onion Skin Waste
Mohamed Hamid Salim
Materials Science, Energy, and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
Contribution: Conceptualization (lead), Formal analysis (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorYouness Abdellaoui
Cinvestav Saltillo, Sustentabilidad de los Recursos Naturales y Energía, Laboratorio de Revaloración de Residuos, Ramos Arizpe, Mexico
CONAHCyT-Cinvestav Saltillo. Sustentabilidad de los Recursos Naturales y Energía. Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Mexico
Contribution: Investigation (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Mehdi Mennani
Materials Science, Energy, and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Correspondence:
Mehdi Mennani ([email protected])
Zineb Kassab ([email protected])
Contribution: Investigation (equal), Validation (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorAbdoulaye Soumare
Laboratory of Agroforestry and Ecology, Assane Seck University (UASZ-UFR ST), Ziguinchor, Senegal
Contribution: Formal analysis (equal), Visualization (equal), Writing - review & editing (supporting)
Search for more papers by this authorLourdes Díaz-Jimenéz
Cinvestav Saltillo, Sustentabilidad de los Recursos Naturales y Energía, Laboratorio de Revaloración de Residuos, Ramos Arizpe, Mexico
Contribution: Conceptualization (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorMounir El Achaby
Materials Science, Energy, and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Contribution: Conceptualization (equal), Resources (equal), Supervision (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Zineb Kassab
Materials Science, Energy, and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Correspondence:
Mehdi Mennani ([email protected])
Zineb Kassab ([email protected])
Contribution: Conceptualization (lead), Methodology (lead), Project administration (lead), Supervision (lead), Validation (lead), Writing - review & editing (lead)
Search for more papers by this authorMohamed Hamid Salim
Materials Science, Energy, and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
Contribution: Conceptualization (lead), Formal analysis (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorYouness Abdellaoui
Cinvestav Saltillo, Sustentabilidad de los Recursos Naturales y Energía, Laboratorio de Revaloración de Residuos, Ramos Arizpe, Mexico
CONAHCyT-Cinvestav Saltillo. Sustentabilidad de los Recursos Naturales y Energía. Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Mexico
Contribution: Investigation (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Mehdi Mennani
Materials Science, Energy, and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Correspondence:
Mehdi Mennani ([email protected])
Zineb Kassab ([email protected])
Contribution: Investigation (equal), Validation (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorAbdoulaye Soumare
Laboratory of Agroforestry and Ecology, Assane Seck University (UASZ-UFR ST), Ziguinchor, Senegal
Contribution: Formal analysis (equal), Visualization (equal), Writing - review & editing (supporting)
Search for more papers by this authorLourdes Díaz-Jimenéz
Cinvestav Saltillo, Sustentabilidad de los Recursos Naturales y Energía, Laboratorio de Revaloración de Residuos, Ramos Arizpe, Mexico
Contribution: Conceptualization (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorMounir El Achaby
Materials Science, Energy, and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Contribution: Conceptualization (equal), Resources (equal), Supervision (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Zineb Kassab
Materials Science, Energy, and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Correspondence:
Mehdi Mennani ([email protected])
Zineb Kassab ([email protected])
Contribution: Conceptualization (lead), Methodology (lead), Project administration (lead), Supervision (lead), Validation (lead), Writing - review & editing (lead)
Search for more papers by this authorFunding: This study was supported by Office Chérifien des Phosphates.
ABSTRACT
Amidst growing interest in sustainable packaging, this study delves into the preparation of polyvinyl alcohol (PVA)-based biofilms filled with cellulose nanocrystals (CNCs) sourced from red onion skin waste, coupled with bio-active red onion extract (OPE). These innovative bionanocomposite films hold promise for active food packaging applications. The investigation focuses on understanding the interplay between the added agents (OPE and CNC) and the macromolecular chains of PVA. Furthermore, the effects of various OPE concentrations on the physicochemical characteristics and antibacterial properties of CNC-filled PVA bio-nanocomposites were also examined. The integration of CNC and OPE noticeably enhanced the film's properties. Mechanical strength increased by 37%, thermal stability improved with a 92°C increase in decomposition temperature, and UV barrier properties were enhanced by 45%. Additionally, antibacterial activity against foodborne pathogens improved, with the highest inhibition rates reaching 89% against Staphylococcus fungi and 79% against Staphylococcus aureus . The findings demonstrated that the incorporation of bio-active OPE significantly enhanced the UV barrier, antibacterial properties, and biodegradability of PVA-CNC bio-nanocomposite films. These films present a promising approach for sustainable and active food packaging solutions, capable of extending shelf life while reducing environmental impact. Further research in real food systems is recommended to validate these results.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 E. F. Sucinda, M. S. A. Majid, M. J. M. Ridzuan, E. M. Cheng, H. A. Alshahrani, and N. Mamat, “Development and Characterisation of Packaging Film From Napier Cellulose Nanowhisker Reinforced Polylactic Acid (PLA) Bionanocomposites,” International Journal of Biological Macromolecules 43 (2021): 187.
- 2 R. Reshmy, P. Eapen, P. A. Sherely, et al., “Nanocellulose-Based Products for Sustainable Applications-Recent Trends and Possibilities,” Biomass Conversion and Biorefinery 19 (2020): 779–806.
- 3 C. Zinge and B. Kandasubramanian, “Nanocellulose Based Biodegradable Polymers,” European Polymer Journal 133 (2020): 109758.
- 4 X. Zhang, Y. Liu, H. Yong, Y. Qin, J. Liu, and J. Liu, “Development of Multifunctional Food Packaging Films Based on Chitosan, TiO2 Nanoparticles and Anthocyanin-Rich Black Plum Peel Extract,” Food Hydrocolloids 94 (2019): 80–92.
- 5 N. Bhargava, V. S. Sharanagat, R. S. Mor, and K. Kumar, “Active and Intelligent Biodegradable Packaging Films Using Food and Food Waste-Derived Bioactive Compounds: A Review,” Trends in Food Science and Technology 105 (2020): 385–401.
- 6 M. C. Silva-Pereira, J. A. Teixeira, V. A. Pereira-Júnior, and R. Stefani, “Chitosan/Corn Starch Blend Films With Extract From Brassica Oleraceae (Red Cabbage) as a Visual Indicator of Fish Deterioration,” LWT- Food Science and Technology 61 (2015): 258–262.
- 7 A. O. C. Iroegbu, S. S. Ray, V. Mbarane, J. C. Bordado, and J. P. Sardinha, “Plastic Pollution: A Perspective on Matters Arising: Challenges and Opportunities,” ACS Omega 6 (2021): 19343–19355.
- 8 V. Gupta, D. Ramakanth, C. Verma, P. K. Maji, and K. K. Gaikwad, “Isolation and Characterization of Cellulose Nanocrystals from Amla (Phyllanthus Emblica) Pomace,” Biomass Conversion and Biorefinery 17, no. 1 (2021): 1.
- 9 Q. J. Chen, L. L. Zhou, J. Q. Zou, and X. Gao, “The Preparation and Characterization of Nanocomposite Film Reinforced by Modified Cellulose Nanocrystals,” International Journal of Biological Macromolecules 132 (2019): 1155–1162.
- 10 Z. Kassab, H. Daoudi, M. H. Salim, C. E. El Hassani, Y. Abdellaoui, and M. El Achaby, “Process-Structure-Property Relationships of Cellulose Nanocrystals Derived From Juncus Effusus Stems on κ-Carrageenan-Based Bio-Nanocomposite Films,” International Journal of Biological Macromolecules 265 (2024): 130892.
- 11 M. Kaya, P. Ravikumar, S. Ilk, et al., “Production and Characterization of Chitosan Based Edible Films From Berberis Crataegina's Fruit Extract and Seed Oil,” Innovative Food Science and Emerging Technologies 45 (2018): 287–297.
- 12 S. Ahmadi, A. Hivechi, S. H. Bahrami, P. B. Milan, and S. S. Ashraf, “Cinnamon Extract Loaded Electrospun Chitosan/Gelatin Membrane With Antibacterial Activity,” International Journal of Biological Macromolecules 173 (2021): 580–590.
- 13 Z. Kassab, Y. Abdellaoui, M. H. Salim, R. Bouhfid, A. E. K. Qaiss, and M. El Achaby, “Micro- and Nano-Celluloses Derived From Hemp Stalks and Their Effect as Polymer Reinforcing Materials,” Carbohydrate Polymers 245 (2020): 116506.
- 14 M. Bajić, T. Ročnik, A. Oberlintner, F. Scognamiglio, U. Novak, and B. Likozar, “Food Package,” Shelf Life 21 (2019): 100365.
- 15 E. Jahed, M. A. Khaledabad, M. R. Bari, and H. Almasi, “Effect of Cellulose and Lignocellulose Nanofibers on the Properties of Origanum Vulgare Ssp. Gracile Essential Oil-Loaded Chitosan Films,” Reactive and Functional Polymers 117 (2017): 70–80.
- 16 E. Jahed, M. A. Khaledabad, H. Almasi, and R. Hasanzadeh, “Physicochemical Properties of Carum Copticum Essential Oil Loaded Chitosan Films Containing Organic Nanoreinforcements,” Carbohydrate Polymers 164 (2017): 325–338.
- 17 H. Wang, J. Qian, and F. Ding, “Emerging Chitosan-Based Films for Food Packaging Applications,” Journal of Agricultural and Food Chemistry 66 (2018): 395–413.
- 18 Y. Y. Qin, Z. H. Zhang, L. Li, M. L. Yuan, J. Fan, and T. R. Zhao, “Physio-Mechanical Properties of an Active Chitosan Film Incorporated With Montmorillonite and Natural Antioxidants Extracted From Pomegranate Rind,” Journal of Food Science and Technology 52 (2015): 1471–1479.
- 19 R. Celano, T. Docimo, A. L. Piccinelli, et al., “Onion Peel: Turning a Food Waste Into a Resource,” Antioxidants 10 (2021): 15451–15462.
- 20 E. Trigueros, Ó. Benito-Román, A. P. Oliveira, et al., “Onion ( Allium cepa L.) Skin Waste Valorization: Unveiling the Phenolic Profile and Biological Potential for the Creation of Bioactive Agents Through Subcritical Water Extraction,” Antioxidants 13, no. 2 (2024): 205.
- 21 M. H. Salim, Z. Kassab, Y. Abdellaoui, A. A. García - Cruz, E. A. Soumare, and M. El Achaby, “Exploration of Multifunctional Properties of Garlic Skin Derived Cellulose Nanocrystals and Extracts Incorporated Chitosan Biocomposite Films for Active Packaging Application,” International Journal of Biological Macromolecules 210 (2022): 639–653.
- 22 K. Chen, M. Zhang, B. Bhandari, and D. Deng, “3D Printed Cinnamon Essential Oil/Banana Peel Carbon Dots Loaded Corn Starch/Gelatin Bilayer Film With Enhanced Functionality for Food Packaging Application,” Food Chemistry 448 (2024): 139176.
- 23 E. Karakuş, Z. Ayhan, and G. Haskaraca, “Food Package,” Shelf Life 37 (2023): 101092.
- 24 P. E. Fathima, S. K. Panda, P. M. Ashraf, T. O. Varghese, and J. Bindu, “Polylactic Acid/Chitosan Films for Packaging of Indian White Prawn (Fenneropenaeus Indicus),” International Journal of Biological Macromolecules 117 (2018): 1002–1010.
- 25 S. G. Kuntzler, J. A. V. Costa, and M. G. de Morais, “Development of Electrospun Nanofibers Containing Chitosan/PEO Blend and Phenolic Compounds With Antibacterial Activity,” International Journal of Biological Macromolecules 117 (2018): 800–806.
- 26 A. Mittal, S. Garg, and S. Bajpai, “Fabrication and Characteristics of Poly (Vinyl Alcohol)-Starch-Cellulosic Material Based Biodegradable Composite Film for Packaging Application,” Materials Today Proceedings 21 (2020): 1577–1582.
- 27 J. Kan, J. Liu, H. Yong, Y. Liu, Y. Qin, and J. Liu, “Development of Active Packaging Based on Chitosan-Gelatin Blend Films Functionalized With Chinese Hawthorn (Crataegus pinnatifida) Fruit Extract,” International Journal of Biological Macromolecules 140 (2019): 384–392.
- 28 N. Eghbalifam, M. Frounchi, and S. Dadbin, “Antibacterial Silver Nanoparticles in Polyvinyl Alcohol/Sodium Alginate Blend Produced by Gamma Irradiation,” International Journal of Biological Macromolecules 80 (2015): 170–176.
- 29 M. S. Islam and M. R. Karim, “Fabrication and Characterization of Poly(Vinyl Alcohol)/alginate Blend Nanofibers by Electrospinning Method,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 366 (2010): 135–140.
- 30 X. Jiang, N. Xiang, H. Zhang, Y. Sun, Z. Lin, and L. Hou, “Preparation and Characterization of Poly(Vinyl Alcohol)/Sodium Alginate Hydrogel With High Toughness and Electric Conductivity,” Carbohydrate Polymers 186 (2018): 377–383.
- 31
S.-K. Baek, S. Kim, and K. Bin Song, “Food Package,” Shelf Life 22 (2019): 100394.
10.1016/j.fpsl.2019.100394 Google Scholar
- 32 A. Soleimanzadeh, S. Mizani, G. Mirzaei, et al., “Recent Advances in Characterizing the Physical and Functional Properties of Active Packaging Films Containing Pomegranate Peel,” Food Chemistry: X 22 (2024): 101416.
- 33 S. Roy, H. C. Kim, P. S. Panicker, J.-W. Rhim, and J. Kim, “Cellulose Nanofiber-Based Nanocomposite Films Reinforced With Zinc Oxide Nanorods and Grapefruit Seed Extract,” Nanomaterials 11 (2021): 11.
- 34 A. A. Oun, G. H. Shin, and J. T. Kim, “Antimicrobial, Antioxidant, and pH-Sensitive Polyvinyl Alcohol/Chitosan-Based Composite Films With Aronia Extract, Cellulose Nanocrystals, and Grapefruit Seed Extract,” International Journal of Biological Macromolecules 213 (2022): 381–393.
- 35 H. Sun, Y. Huang, Y. Chen, X. Liu, and X. Leng, “Effects of Curcumin, Phycocyanin, or Modified Lycopene Colorants on the Physicochemical and Sensory Properties of Whey Protein–Cellulose Nanocrystal Packaging Films,” Food Chemistry 412 (2023): 135541.
- 36 H. Rajabinejad, M. Zoccola, A. Patrucco, et al., “Fabrication and Properties of Keratoses/Polyvinyl Alcohol Blend Films,” Polymer Bulletin 77 (2019): 3033–3046.
- 37 X. Tang and S. Alavi, “Recent Advances in Starch, Polyvinyl Alcohol Based Polymer Blends, Nanocomposites and Their Biodegradability,” Carbohydrate Polymers 85 (2011): 7–16.
- 38 Z. Wang, F. Yan, H. Pei, J. Li, Z. Cui, and B. He, “Antibacterial and Environmentally Friendly Chitosan/Polyvinyl Alcohol Blend Membranes for Air Filtration,” Carbohydrate Polymers 198 (2018): 241–248.
- 39 L. Azaryouh, Z. Kassab, M. Jaouahar, et al., “Integral Valorization of Two-Phase Olive Mill Waste: Extraction of Cellulose and Lignin and Their Characterization,” Euro-Mediterranean Journal for Environmental Integration 9 (2024): 513–522.
- 40 M. Mennani, A. Ait Benhamou, M. Kasbaji, et al., “Insights on the Physico-Chemical Properties of Alkali Lignins From Different Agro-Industrial Residues and Their Use in Phenol-Formaldehyde Wood Adhesive Formulation,” International Journal of Biological Macromolecules 221 (2022): 149–162.
- 41 M. Mennani, M. Kasbaji, A. Ait Benhamou, et al., “Current Approaches, Emerging Developments and Functional Prospects for Lignin-Based Catalysts – A Review,” Green Chemistry 25 (2023): 2896–2929.
- 42
P. H. F. Pereira, H. L. Ornaghi Júnior, L. V. Coutinho, B. Duchemin, and M. O. H. Cioffi, “Obtaining Cellulose Nanocrystals From Pineapple Crown Fibers by Free-Chlorite Hydrolysis with Sulfuric Acid: Physical, Chemical and Structural Characterization,” Cellulose 2710, no. 27 (2020): 5745–5756.
10.1007/s10570-020-03179-6 Google Scholar
- 43 M. Mujtaba, A. M. Salaberria, M. A. Andres, M. Kaya, A. Gunyakti, and J. Labidi, “Utilization of Flax (Linum Usitatissimum) Cellulose Nanocrystals as Reinforcing Material for Chitosan Films,” International Journal of Biological Macromolecules 104 (2017): 944–952.
- 44 A. B. Perumal, R. B. Nambiar, P. S. Sellamuthu, E. R. Sadiku, X. Li, and Y. He, “Extraction of Cellulose Nanocrystals From Areca Waste and Its Application in Eco-Friendly Biocomposite Film,” Chemosphere 287 (2022): 132084.
- 45 H. Daoudi, A. Ait Benhamou, A. Moubarik, M. El Achaby, and Z. Kassab, “Influence of Morphological Diversity of Cellulose Nanocrystals and Nanospheres on Nanocomposites with Chitosan,” Cellulose (2024).
- 46 M. Kasbaji, M. Mennani, M. Oubenali, et al., “Bio-Based Functionalized Adsorptive Polymers for Sustainable Water Decontamination: A Systematic Review of Challenges and Real-World Implementation,” Environmental Pollution 335 (2023): 122349.
- 47 M. El Achaby, N. El Miri, A. Aboulkas, et al., “Processing and Properties of Eco-Friendly Bio-Nanocomposite Films Filled With Cellulose Nanocrystals From Sugarcane Bagasse,” International Journal of Biological Macromolecules 96 (2017): 340–352.
- 48 S. Singh, K. K. Gaikwad, and Y. S. Lee, “Antimicrobial and Antioxidant Properties of Polyvinyl Alcohol Bio Composite Films Containing Seaweed Extracted Cellulose Nano-Crystal and Basil Leaves Extract,” International Journal of Biological Macromolecules 107 (2018): 1879–1887.
- 49 W. Wu, F. Xiang, and F. He, “Polyphenols From Artemisia Argyi Leaves: Environmentally Friendly Extraction Under High Hydrostatic Pressure and Biological Activities,” Industrial Crops and Products 171 (2021): 113951.
- 50 W. Lan, S. Wang, Z. Zhang, X. Liang, X. Liu, and J. Zhang, “Development of Red Apple Pomace Extract/Chitosan-Based Films Reinforced by TiO2 Nanoparticles as a Multifunctional Packaging Material,” International Journal of Biological Macromolecules 168 (2021): 105–115.
- 51 T. Wu, B. Cai, J. Wang, et al., “TEMPO-Oxidized Cellulose Nanofibril/Layered Double Hydroxide Nanocomposite Films With Improved Hydrophobicity, Flame Retardancy and Mechanical Properties,” Composites Science and Technology 171 (2019): 111–117.
- 52 J. D. Hernández-Varela, J. J. Chanona-Pérez, H. A. Calderón Benavides, F. Cervantes Sodi, and M. Vicente-Flores, “Effect of Ball Milling on Cellulose Nanoparticles Structure Obtained From Garlic and Agave Waste,” Carbohydrate Polymers 255 (2021): 117347.
- 53 I. El Mannoubi, “Effect of Extraction Solvent on Phenolic Composition, Antioxidant and Antibacterial Activities of Skin and Pulp of Tunisian Red and Yellow–Orange Opuntia Ficus Indica Fruits,” Journal of Food Measurement and Characterization 151, no. 15 (2020): 643–651.
- 54 L. Elleuch, M. Shaaban, S. Smaoui, et al., “Bioactive Secondary Metabolites From a New Terrestrial Streptomyces Sp. TN262,” Applied Biochemistry and Biotechnology 162 (2010): 579–593.
- 55 Y. Qin, Y. Liu, X. Zhang, and J. Liu, “Development of Active and Intelligent Packaging by Incorporating Betalains From Red Pitaya (Hylocereus polyrhizus) Peel Into Starch/Polyvinyl Alcohol Films,” Food Hydrocolloids 100 (2020): 105410.
- 56 F. Guthrie, Y. Wang, N. Neeve, S. Y. Quek, K. Mohammadi, and S. Baroutian, “Recovery of Phenolic Antioxidants From Green Kiwifruit Peel Using Subcritical Water Extraction,” Food and Bioproducts Processing 122 (2020): 136–144.
- 57 K. Chhouk, C. Uemori, H. Wahyudiono, and M. G. Kanda, “Extraction of Phenolic Compounds and Antioxidant Activity From Garlic Husk Using Carbon Dioxide Expanded Ethanol,” Chemical Engineering and Processing Process Intensification 117 (2017): 113–119.
- 58 A. M. Nuutila, R. Puupponen-Pimiä, M. Aarni, and K. M. Oksman-Caldentey, “Comparison of Antioxidant Activities of Onion and Garlic Extracts by Inhibition of Lipid Peroxidation and Radical Scavenging Activity,” Food Chemistry 81 (2003): 485–493.
- 59 N. F. Sukor, V. P. Selvam, R. Jusoh, N. S. Kamarudin, and S. A. Rahim, “Intensified DES Mediated Ultrasound Extraction of Tannic Acid From Onion Peel,” Journal of Food Engineering 296 (2021): 110437.
- 60 T. Gabriel, A. Belete, G. Hause, R. H. H. Neubert, and T. Gebre-Mariam, “Isolation and Characterization of Cellulose Nanocrystals From Different Lignocellulosic Residues: A Comparative Study,” Journal of Polymers and the Environment 29 (2021): 2964.
- 61 K. S. Prado and M. A. S. Spinacé, “Isolation and Characterization of Cellulose Nanocrystals From Pineapple Crown Waste and Their Potential Uses,” International Journal of Biological Macromolecules 122 (2019): 410–416.
- 62 L. Jasmani and S. Adnan, “Preparation and Characterization of Nanocrystalline Cellulose From Acacia Mangium and Its Reinforcement Potential,” Carbohydrate Polymers 161 (2017): 166–171.
- 63 Z. Kassab, H. Ben, H. Hannache, and M. El Achaby, “Isolation of Cellulose Nanocrystals From Various Lignocellulosic Materials: Physico-Chemical Characterization and Application in Polymer Composites Development,” Materials Today Proceedings 13 (2019): 964–973.
- 64 W. P. Flauzino Neto, H. A. Silvério, N. O. Dantas, and D. Pasquini, “Extraction and Characterization of Cellulose Nanocrystals From Agro-Industrial Residue – Soy Hulls,” Industrial Crops and Products 42 (2013): 480–488.
- 65 A. Ait Benhamou, Z. Kassab, A. Boussetta, et al., “Beneficiation of Cactus Fruit Waste Seeds for the Production of Cellulose Nanostructures: Extraction and Properties,” International Journal of Biological Macromolecules 203 (2022): 302–311.
- 66 H. Risite, M. H. Salim, B. T. Oudinot, et al., “ Artemisia annua Stems a New Sustainable Source for Cellulosic Materials: Production and Characterization of Cellulose Microfibers and Nanocrystals,” Waste and Biomass Valorization 13 (2022): 2411–2423.
- 67 M. El Achaby, N. El Miri, H. Hannache, S. Gmouh, H. B. Youcef, and A. Aboulkas, “Production of Cellulose Nanocrystals From Vine Shoots and Their Use for the Development of Nanocomposite Materials,” International Journal of Biological Macromolecules 117 (2018): 592–600.
- 68 E. Cudjoe, M. Hunsen, Z. Xue, et al., “Miscanthus Giganteus: A Commercially Viable Sustainable Source of Cellulose Nanocrystals,” Carbohydrate Polymers 155 (2017): 230–241.
- 69 A. Bahloul, Z. Kassab, M. El Bouchti, et al., “Micro- and Nano-Structures of Cellulose From Eggplant Plant (Solanum melongena L) Agricultural Residue,” Carbohydrate Polymers 253 (2021): 117311.
- 70 K. Bahsaine, B. El Allaoui, H. Benzeid, et al., “Hemp Cellulose Nanocrystals for Functional Chitosan/Polyvinyl Alcohol-Based Films for Food Packaging Applications,” RSC Advances 13 (2023): 33294–33304.
- 71 A. Mokhtari, M. Sabzi, and H. Azimi, “3D Porous Bioadsorbents Based on Chitosan/Alginate/Cellulose Nanofibers as Efficient and Recyclable Adsorbents of Anionic Dye,” Carbohydrate Polymers 265 (2021): 118075.
- 72
M. H. Salim, Z. Kassab, I. Kassem, et al., Graphene and Nanoparticles Hybrid Nanocomposites: From Preparation to Applications, eds. A. e. K. Qaiss, R. Bouhfid, and M. Jawaid (Singapore: Springer Singapore, 2021), 113.
10.1007/978-981-33-4988-9_4 Google Scholar
- 73 M. Salari, M. Sowti Khiabani, R. Rezaei Mokarram, B. Ghanbarzadeh, and H. Samadi Kafil, “Development and Evaluation of Chitosan Based Active Nanocomposite Films Containing Bacterial Cellulose Nanocrystals and Silver Nanoparticles,” Food Hydrocolloids 84 (2018): 414–423.
- 74 A. D. French, “Idealized Powder Diffraction Patterns for Cellulose Polymorphs,” Cellulose 21 (2014): 885–896.
- 75 M. H. Salim, Z. Kassab, I. Kassem, et al., “ Characterization Techniques for Hybrid Nanocomposites Based on Cellulose Nanocrystals/Nanofibrils and Nanoparticles,” in Cellulose Nanocrystal/Nanoparticles Hybrid Nanocomposites (Singapore: Woodhead Publishing, 2021), 27–64.
- 76 Z. Kassab, Y. Abdellaoui, M. Hamid Salim, and M. El Achaby, “Cellulosic Materials From Pea (Pisum Sativum) and Broad Beans (Vicia Faba) Pods Agro-Industrial Residues,” Materials Letters 280 (2020): 128539.
- 77 A. Bahloul, Z. Kassab, F. Aziz, et al., “Characteristics of Cellulose Microfibers and Nanocrystals Isolated From Doum Tree (Chamaerops humilis Var. Argentea),” Cellulose 28 (2021): 4089–4103.
- 78 P. Eaton, P. Quaresma, C. Soares, et al., “A Direct Comparison of Experimental Methods to Measure Dimensions of Synthetic Nanoparticles,” Ultramicroscopy 182 (2017): 179–190.
- 79 Y. Xiao, Y. Liu, X. Wang, M. Li, H. Lei, and H. Xu, “Cellulose Nanocrystals Prepared From Wheat Bran: Characterization and Cytotoxicity Assessment,” International Journal of Biological Macromolecules 140 (2019): 225–233.
- 80 P. G. Gan, S. T. Sam, M. F. Abdullah, M. F. Omar, and W. K. Tan, “Water Resistance and Biodegradation Properties of Conventionally-Heated and Microwave-Cured Cross-Linked Cellulose Nanocrystal/Chitosan Composite Films,” Polymer Degradation and Stability 188 (2021): 109563.
- 81 S. M. Costa, D. P. Ferreira, P. Teixeira, L. F. Ballesteros, J. A. Teixeira, and R. Fangueiro, “Active Natural-Based Films for Food Packaging Applications: The Combined Effect of Chitosan and Nanocellulose,” International Journal of Biological Macromolecules 177 (2021): 241–251.
- 82 A. B. Perumal, P. S. Sellamuthu, R. B. Nambiar, and E. R. Sadiku, “Development of Polyvinyl Alcohol/Chitosan Bio-Nanocomposite Films Reinforced With Cellulose Nanocrystals Isolated From Rice Straw,” Applied Surface Science 449 (2018): 591–602.
- 83 R. Sun, J. Zhu, H. Wu, S. Wang, W. Li, and Q. Sun, “Modulating Layer-By-Layer Assembled Sodium Alginate-Chitosan Film Properties Through Incorporation of Cellulose Nanocrystals With Different Surface Charge Densities,” International Journal of Biological Macromolecules 180 (2021): 510–522.
- 84 D. Wang, W. Cheng, Q. Wang, J. Zang, Y. Zhang, and G. Han, “Preparation of Electrospun Chitosan/Poly(Ethylene Oxide) Composite Nanofibers Reinforced With Cellulose Nanocrystals: Structure, Morphology, and Mechanical Behavior,” Composites Science and Technology 182 (2019): 107774.
- 85 M. Salari, M. Sowti Khiabani, R. Rezaei Mokarram, B. Ghanbarzadeh, and H. Samadi Kafil, “Use of Gamma Irradiation Technology for Modification of Bacterial Cellulose Nanocrystals/Chitosan Nanocomposite Film,” Carbohydrate Polymers 253 (2021): 117144.
- 86 S. Bonardd, E. Robles, I. Barandiaran, C. Saldías, Á. Leiva, and G. Kortaberria, “Biocomposites With Increased Dielectric Constant Based on Chitosan and Nitrile-Modified Cellulose Nanocrystals,” Carbohydrate Polymers 199 (2018): 20–30.
- 87
D. Rodríguez, M. A. García, N. de la Paz, P. A. Badillo, C. Castro, and A. Casariego, “Effect of the Addition of Turmeric Hydroalcoholic Extract on Physicochemical Properties of Chitosan Films and Shelf Life Extension of Minimally Processed Pineapple,” Journal of Packaging Technology and Reseach 5 (2021): 185–200.
10.1007/s41783-021-00122-3 Google Scholar
- 88 F. Bigi, H. Haghighi, H. W. Siesler, F. Licciardello, and A. Pulvirenti, “Characterization of Chitosan-Hydroxypropyl Methylcellulose Blend Films Enriched With Nettle or Sage Leaf Extract for Active Food Packaging Applications,” Food Hydrocolloids 120 (2021): 106979.
- 89 Q. Li, P. Cai, H. Xiao, and Y. Pan, “pH-Responsive Color Indicator Films Based on Chitosan and Purple Yam Extract for In-Situ Monitoring Food Freshness,” Food Bioscience 56 (2023): 103373.
- 90 R. Thakur, V. Gupta, T. Ghosh, and A. B. Das, “Food Package,” Shelf Life 33 (2022): 100914.
- 91 T. Gasti, S. Dixit, S. P. Sataraddi, et al., “Physicochemical and Biological Evaluation of Different Extracts of Edible Solanum nigrum L. Leaves Incorporated Chitosan/Poly (Vinyl Alcohol) Composite Films,” Journal of Polymers and the Environment 28 (2020): 2918–2930.
- 92 P. G. Gan, S. T. Sam, M. F. Abdullah, M. F. Omar, and W. K. Tan, “Thermal Properties of Nanocellulose-Reinforced Composites: A Review,” Journal of Applied Polymer Science 137 (2020): 1.
- 93 T. K. Ong, K. Y. Tshai, H. L. Choo, P. S. Khiew, and S. L. Chung, “Mechanical Performance and Biodegradability of Polyvinyl Alcohol Nanocomposite Films,” Materialwissenschaft und Werkstofftechnik 51 (2020): 740–749.
- 94 S. Salehpour, M. Jonoobi, M. Ahmadzadeh, V. Siracusa, F. Rafieian, and K. Oksman, “Biodegradation and Ecotoxicological Impact of Cellulose Nanocomposites in Municipal Solid Waste Composting,” International Journal of Biological Macromolecules 111 (2018): 264–270.
- 95 A. Bashir, S. Jabeen, N. Gull, et al., “Co-Concentration Effect of Silane With Natural Extract on Biodegradable Polymeric Films for Food Packaging,” International Journal of Biological Macromolecules 106 (2018): 351–359.
- 96 X.-J. Xu, S.-M. Huang, and L.-H. Zhang, “Biodegradability, Antibacterial Properties, and Ultraviolet Protection of Polyvinyl Alcohol-Natural Polyphenol Blends,” Polymer Composites 30 (2009): 1611–1617.