Construction of a hydrophobicity, phosphorus- and nitrogen-containing layered double hydroxides-based synergistic effect flame retardant for poly (lactic acid)
Corresponding Author
Kunyan Wang
Department of Materials Chemistry, Huzhou University, Huzhou, China
Correspondence
Kunyan Wang and Guoxiang Pan, Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou 313000, PR China.
Email: [email protected] and [email protected]
Contribution: Writing - original draft (lead)
Search for more papers by this authorYibo Gao
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Data curation (equal)
Search for more papers by this authorZuocheng Zhang
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Investigation (equal)
Search for more papers by this authorZhou Fang
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Data curation (equal)
Search for more papers by this authorYuhua Guo
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Data curation (lead)
Search for more papers by this authorPeisong Tang
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Formal analysis (lead)
Search for more papers by this authorCorresponding Author
Guoxiang Pan
Department of Materials Chemistry, Huzhou University, Huzhou, China
Correspondence
Kunyan Wang and Guoxiang Pan, Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou 313000, PR China.
Email: [email protected] and [email protected]
Contribution: Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Kunyan Wang
Department of Materials Chemistry, Huzhou University, Huzhou, China
Correspondence
Kunyan Wang and Guoxiang Pan, Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou 313000, PR China.
Email: [email protected] and [email protected]
Contribution: Writing - original draft (lead)
Search for more papers by this authorYibo Gao
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Data curation (equal)
Search for more papers by this authorZuocheng Zhang
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Investigation (equal)
Search for more papers by this authorZhou Fang
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Data curation (equal)
Search for more papers by this authorYuhua Guo
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Data curation (lead)
Search for more papers by this authorPeisong Tang
Department of Materials Chemistry, Huzhou University, Huzhou, China
Contribution: Formal analysis (lead)
Search for more papers by this authorCorresponding Author
Guoxiang Pan
Department of Materials Chemistry, Huzhou University, Huzhou, China
Correspondence
Kunyan Wang and Guoxiang Pan, Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou 313000, PR China.
Email: [email protected] and [email protected]
Contribution: Writing - review & editing (lead)
Search for more papers by this authorAbstract
In this work, a synergistic effect strategy was explored for fabricating hydrophobicity, phosphorus- and nitrogen-containing layered double hydroxides nanosheets (LDHs) based flame retardant (LDHs-K@DM). This fabricating process was achieved by amination of the surface of LDHs and, subsequently, interfacial self-assembly with high P content of diethylenetriaminpenta (methylene-phosphonic acid) (DTPMP) and high N content of melamine (MEL). The chemical construction and thermal stabilization properties of LDHs-K@DM were confirmed via different characterization approaches. The results revealed that LDHs-K@DM was successfully prepared and the surface of LDHs-K@DM was transformed into hydrophobicity with high water contact angle. Moreover, LDHs-K@DM had better thermal stability. After that, LDHs-K@DM was molten compounded with biobased polylactic acid (PLA). It was suggested that LDHs-K@DM were uniformly dispersed in the PLA matrix and could accelerate the decomposition of PLA to form char residues. Most importantly, the addition of 20 wt% LDHs-K@DM into PLA can endow the composite to achieve a desirable UL-94 V-0 rating and the limiting oxygen index value of 30.9%. Finally, the synergistic effect flame retardant mechanism of LDHs-K@DM was comprehensively analyzed. This synergistic decorating strategy for preparing LDHs-K@DM flame retardant is promising for industrial production.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
app56352-sup-0001-Supinfo.docxWord 2007 document , 668.9 KB | Data S1. Supplementary Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Y. Y. Zhou, Y. C. Lin, B. J. Tawish, J. Sun, R. K. K. Yuen, B. Fei, A. C. S. Appl, Mater. Interfaces. 2021, 13, 21876.
- 2Y. Wang, D. Wang, M. F. Zhang, D. Wang, T. Li, J. Jiang, M. Q. Chen, W. F. Dong, Polym. Degrad. Stab. 2023, 211, 110309.
- 3H. Torabi, H. McGreal, H. Zarrin, E. Behzadfar, ACS Appl. Polym. Mater. 2023, 5, 4034.
- 4J. Xu, J. B. Fei, T. Tang, M. Ma, Y. Q. Shi, H. W. He, S. Chen, X. Wang, Polymer 2022, 258, 125263.
- 5L. H. Liu, M. H. Yan, H. Zhang, Y. Zhang, J. B. Feng, Z. P. Fang, P. G. Song, ACS Sustain. Chem. Eng. 2022, 10, 16313.
- 6J. He, Z. Sun, Y. Chen, B. Xu, J. Li, L. Qian, Cellulose 2022, 29, 6143.
- 7Y. Hu, Y. C. Wang, M. Y. Lai, Y. Q. Xue, J. P. Zhao, J. Appl. Polym. Sci. 2024, 141, 55698.
10.1002/app.55698 Google Scholar
- 8Y. Chen, X. Wu, M. Li, L. Qian, H. Zhou, Polym. Adv. Technol. 2022, 33, 198.
- 9D. Tang, Z. Qin, X. Luo, H. Yang, Y. Liao, K. Liu, H. Ding, W. Tang, Int. J. Biol. Macromol. 2024, 273, 132777.
- 10R. Zheng, Y. Chen, Q. Cai, L. Qian, Polym. Compos. 2024, 45, 4680.
- 11Z. T. Zhang, Y. Liu, W. N. Du, Z. Liang, F. F. Li, Y. Yong, Z. J. Li, J. Colloid Interface Sci. 2023, 632, 311.
- 12S. R. Xu, J. Liu, X. Liu, H. F. Li, X. F. Gu, J. Sun, S. Zhang, Polym. Degrad. Stab. 2022, 202, 110043.
- 13Y. S. Gao, Q. Wang, J. Y. Wang, L. Huang, X. G. Yan, X. Zhang, Q. L. He, Z. P. Xing, Z. H. Guo, A. C. S. Appl, Mater. Interfaces. 2014, 6, 5094.
- 14A. A. G. Sowndarya, M. Sujata, R. Prasanna, Appl. Clay Sci. 2022, 230, 106714.
10.1016/j.clay.2022.106714 Google Scholar
- 15J. Hu, S. Xu, C. J. Ding, Z. H. Liu, W. J. Yan, Y. Hu, C. Z. Zhong, X. X. Cui, K. Wu, H. Y. Zeng, Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129472.
- 16B. Yu, W. Xing, W. Guo, S. Qiu, X. Wang, S. Lo, Y. Hu, J. Mater. Chem. A 2016, 4, 7330.
- 17P. Li, L. Dang, Y. W. Li, S. J. Lan, D. H. Zhu, Mater. Des. 2022, 217, 110608.
- 18K. Wu, S. Xu, X. Y. Tian, H. Y. Zeng, J. Hu, Y. H. Guo, J. Jian, Int. J. Biol. Macromol. 2021, 178, 580.
- 19J. Z. Du, L. Jin, H. Y. Zeng, X. K. Shi, E. G. Zhou, B. Feng, X. Sheng, Appl. Clay Sci. 2019, 180, 105193.
- 20M. Shahanian, N. Basaki, H. A. Khonakdar, S. H. Jafari, K. Hedayati, U. Wagenknecht, Appl. Clay Sci. 2014, 90, 101.
10.1016/j.clay.2013.12.033 Google Scholar
- 21P. J. Wang, X. P. Hu, D. J. Liao, Y. Wen, H. T. Richard, F. Miao, Q. T. Zhang, Ind. Eng. Chem. Res. 2017, 56, 920.
- 22P. Ding, B. Kang, J. Zhang, J. Yang, N.n. Song, S. Tang, L. Shi, J. Colloid Interface Sci. 2015, 440, 46.
- 23Z. H. Lu, W. L. Feng, X. L. Kang, J. L. Wang, H. Xu, J. T. Li, Y. P. Wang, B. Y. Liu, X. M. Fang, Polym. Adv. Technol. 2020, 31, 2512.
- 24S. J. Yu, S. Y. Lu, D. F. Tan, Y. F. Zhu, Eur. Polym. J. 2022, 164, 110970.
- 25H. Jiang, Y. H. Xie, R. Zhu, Y. Luo, X. X. Sheng, D. L. Xie, Y. Mei, Chem. Eng. J. 2023, 456, 141049.
- 26Y. L. Sui, H. F. Sima, W. D. Shao, C. L. Zhang, Compos. B. 2022, 229, 109463.
- 27K. C. Zhang, J. Li, L. He, Q. Q. Guan, X. M. Xu, R. R. Miao, M. L. Wang, H. J. Zhou, Appl. Clay Sci. 2022, 228, 106646.
- 28B. Lyu, K. Luo, D. Cao, Y. Wang, J. Ma, Polym. Degrad. Stab. 2021, 183, 109430.
- 29S. Chhetri, N. C. Adak, P. Samanta, N. C. Murmu, T. Kuila, Ind. Eng. Chem. Res. 2018, 57, 8729.
- 30W. J. Yan, S. Xu, C. J. Ding, Z. H. Liu, Y. Hu, Q. X. Fan, J. S. Li, X. Y. Tian, H. Y. Zeng, Appl. Clay Sci. 2022, 228, 106620.
- 31S. Xu, S. Y. Li, M. Zhang, H. Y. Zeng, J. Z. Du, C. R. Chen, Appl. Clay Sci. 2018, 163, 196.
- 32Z. L. He, L. L. Long, H. Yuan, H. Pang, Y. T. Wang, L. Ye, M. Xu, C. Chen, Y. Liu, Y. L. Xiao, C. L. Xu, J. Wu, G. Yang, J. Clean. Prod. 2023, 393, 136235.
- 33K. Y. Wang, H. T. Zhu, S. B. Zheng, Y. H. Guo, P. S. Tang, Y. B. Ding, W. Z. Jia, G. X. Pan, Q. P. Guo, J. Appl. Polym. Sci. 2022, 139, 1.
- 34J. H. Yang, W. Zhang, H. J. Ryu, J. H. Lee, D. H. Park, J. Y. Choi, A. Vinu, A. A. Elzatahry, J. H. Choy, J. Mater. Chem. A 2015, 3, 22730.
- 35N. Q. Yao, H. B. Wang, L. Q. Zhang, D. M. Yue, M. Tian, Appl. Surf. Sci. 2020, 530, 147124.
- 36L. Y. Lv, P. Y. Guo, F. Xing, N. X. Han, Constr. Build. Mater. 2020, 235, 117443.
- 37S. Y. Ran, F. Fang, Z. H. Guo, P. G. Song, Y. F. Cai, Z. P. Fang, Compos. B. Eng. 2019, 170, 41.
- 38T. Zhang, H. Q. Yan, L. Shen, Z. P. Fang, X. M. Zhang, J. J. Wang, B. Y. Zhang, Ind. Eng. Chem. Res. 2014, 53, 19199.
- 39S. T. Huang, G. L. Wang, N. B. Li, H. Q. Luo, RSC Adv. 2012, 2, 10948.
- 40J. L. Zou, J. F. Shi, J. X. Yang, J. Li, Y. Liu, Mater. Today Commun. 2022, 32, 104053.
- 41G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul, P. Fredericks, L. Grøndahl, Biomacromolecules 2007, 8, 2533.
- 42S. He, Y. Y. Gao, Z. Y. Zhao, S. C. Huang, Z. X. Chen, C. Deng, Y. Z. Wang, ACS Appl. Polym. Mater. 2021, 3, 1488.
- 43X. D. Jin, X. Y. Gu, C. Chen, W. F. Tang, H. F. Li, X. D. Liu, S. Bourbigot, Z. W. Zhang, J. Sun, S. Zhang, J. Mater. Sci. 2017, 52, 12235.
- 44X. Y. Wang, J. H. Nie, N. D. Zhao, Y. C. Hou, Y. R. Guo, S. J. Li, Q. J. Pan, Int. J. Biol. Macromol. 2021, 191, 584.
- 45J. B. Feng, X. D. Xu, Z. G. Xu, H. Y. Xie, P. G. Song, L. J. Li, G. B. Huang, H. Wang, ACS Sustain. Chem. Eng. 2020, 8, 16612.
- 46S. B. Nie, X. L. Liu, G. L. Dai, S. J. Yuan, F. Cai, B. X. Li, Y. Hu, J. Appl. Polym. Sci. 2012, 125, 485.
- 47S. Y. Liang, P. Hemberger, N. Mattias Neisius, A. Bodi, H. Grützmacher, J. Levalois-Grützmacher, S. Gaan, Chem. Eur. J. 2015, 21, 1073.
- 48Y. Shi, C. Liu, Z. Duan, B. Yu, M. Liu, P. Song, Chem. Eng. J. 2020, 399, 125829.
- 49M. Zhang, X. Q. Ding, Y. X. Zhan, Y. T. Wang, X. L. Wang, J. Hazard. Mater. 2020, 384, 121260.
- 50A. A. Alqadami, M. Naushad, Z. A. Alothman, M. Alsuhybani, M. Algamdi, J. Hazard. Mater. 2020, 389, 121896.
- 51P. Li, X. C. Jiang, W. M. Song, L. Y. Zhang, Y. J. Xu, Y. Liu, P. Zhu, Int. J. Biol. Macromol. 2023, 240, 124387.
- 52C. M. Becker, A. D. Gabbardo, F. Wypych, S. C. Amico, Compos. A. Appl. Sci. Manuf. 2011, 42, 196.