Dual-active-layer flexible piezoresistive sensor based on wrinkled microstructures and electrospun fiber network for human-related motion sensing applications
Corresponding Author
Xiaohui Nan
School of Mechatronic Engineering, North Minzu University, Yinchuan, China
Ningxia Engineering Research Center for Hybrid Manufacturing System, Yinchuan, China
Correspondence
Xiaohui Nan, School of Mechatronic Engineering, North Minzu University, Yinchuan 750021, China.
Email: [email protected]
Contribution: Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorJiaqing Xie
College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
Contribution: Conceptualization (lead), Writing - review & editing (supporting)
Search for more papers by this authorYang Gao
School of Mechatronic Engineering, North Minzu University, Yinchuan, China
Ningxia Engineering Research Center for Hybrid Manufacturing System, Yinchuan, China
Contribution: Conceptualization (supporting)
Search for more papers by this authorXu Zhang
School of Materials Science and Engineering, North Minzu University, Yinchuan, China
Contribution: Validation (supporting)
Search for more papers by this authorXiaofei Lou
School of Mechatronic Engineering, North Minzu University, Yinchuan, China
Contribution: Conceptualization (supporting)
Search for more papers by this authorFuwei Wang
School of Mechatronic Engineering, North Minzu University, Yinchuan, China
Ningxia Engineering Research Center for Hybrid Manufacturing System, Yinchuan, China
Contribution: Conceptualization (supporting)
Search for more papers by this authorCorresponding Author
Xiaohui Nan
School of Mechatronic Engineering, North Minzu University, Yinchuan, China
Ningxia Engineering Research Center for Hybrid Manufacturing System, Yinchuan, China
Correspondence
Xiaohui Nan, School of Mechatronic Engineering, North Minzu University, Yinchuan 750021, China.
Email: [email protected]
Contribution: Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorJiaqing Xie
College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
Contribution: Conceptualization (lead), Writing - review & editing (supporting)
Search for more papers by this authorYang Gao
School of Mechatronic Engineering, North Minzu University, Yinchuan, China
Ningxia Engineering Research Center for Hybrid Manufacturing System, Yinchuan, China
Contribution: Conceptualization (supporting)
Search for more papers by this authorXu Zhang
School of Materials Science and Engineering, North Minzu University, Yinchuan, China
Contribution: Validation (supporting)
Search for more papers by this authorXiaofei Lou
School of Mechatronic Engineering, North Minzu University, Yinchuan, China
Contribution: Conceptualization (supporting)
Search for more papers by this authorFuwei Wang
School of Mechatronic Engineering, North Minzu University, Yinchuan, China
Ningxia Engineering Research Center for Hybrid Manufacturing System, Yinchuan, China
Contribution: Conceptualization (supporting)
Search for more papers by this authorAbstract
Flexible pressure sensors with high sensitivity and a wide detection range must be developed for practical applications. In this study, a dual-active-layer flexible piezoresistive sensor was developed. A reduced graphene oxide film with wrinkled microstructures was prepared by a simple and low-cost substrate pre-stretching method and used as the first active layer. A thermoplastic polyurethane electrospun fiber membrane was modified by fast polydopamine coating and ultrasonication with multi-walled carbon nanotubes and used as the second active layer. Owing to the continuously changing conductive pathways created by the wrinkled microstructures and fiber network under pressure deformation, the sensor achieved a detection range of 0–100 kPa, with sensitivities of 8.5, 1.35, and 0.39 kPa−1 in the ranges of 0–1, 1–20, and 20–100 kPa, respectively. Additionally, the sensor exhibited a low detection limit (2 Pa), response and recovery times of 105 and 85 ms, respectively, and reliable service performance over 10,000 loading/unloading cycles. The sensor enabled real-time monitoring of finger and wrist bending, beaker-holding, and fingertip-sliding on a touch screen, demonstrating its feasible applications in wearable electronics and human–machine interface devices.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
app56340-sup-0001-supinfo.docxWord 2007 document , 1.1 MB | Data S1. Supporting Information. |
app56340-sup-0002-VideoS1.mp4MPEG-4 video, 18.2 MB | Video S1. Supporting Information. |
app56340-sup-0003-VideoS2.mp4MPEG-4 video, 30.2 MB | Video S2. Supporting Information. |
app56340-sup-0004-VideoS3.mp4MPEG-4 video, 19.1 MB | Video S3. Supporting Information. |
app56340-sup-0005-VideoS4.mp4MPEG-4 video, 7 MB | Video S4. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Q. Yu, C. Su, S. Bi, Y. Huang, J. Li, H. Shao, J. Jiang, N. Chen, ACS Appl. Mater. Interfaces 2022, 14, 9632.
- 2T. Q. Trung, N. E. Lee, Adv. Mater. 2016, 28, 4338.
- 3J. Zhang, Z. Wang, Y. Huang, X. Pi, Y. Wu, Q. Shi, J. Appl. Polym. Sci. 2024, 141, e55009.
- 4C. Wang, X. Hou, M. Cui, J. Yu, X. Fan, J. Qian, J. He, W. Geng, J. Mu, X. Chou, Sci. Chin. Mater. 2020, 63, 403.
- 5X. Zheng, D. Zhou, Z. Liu, X. Hong, C. Li, S. Ge, W. Cao, Small 2024, 20, 2310032.
- 6W. Yang, M. Xie, X. Zhang, X. Sun, C. Zhou, Y. Chang, H. Zhang, X. Duan, A. C. S. Appl, Mater. Interfaces 2021, 13, 55756.
- 7S. Li, H. Zhao, R. F. Shepherd, MRS Bull. 2017, 42, 138.
- 8G. Y. Bae, S. W. Pak, D. Kim, G. Lee, Y. Chung, K. Cho, Adv. Mater. 2016, 28, 5300.
- 9Y. Wei, X. Shi, Z. Yao, J. Zhi, L. Hu, R. Yan, C. Shi, H.-D. Yu, W. Huang, Npj Flexible Electron. 2023, 7, 13.
- 10D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang, L. Zhao, W. Han, K. Jiang, G. Shen, Nano Energy 2020, 78, 105252.
- 11M. Chao, L. He, M. Gong, N. Li, X. Li, L. Peng, F. Shi, L. Zhang, P. Wan, ACS Nano 2021, 15, 9746.
- 12S. Wang, S. Chang, Y. Song, X. Qiao, L. Li, L. Zhao, P. Yang, S. Yu, J. Mater. Sci. Mater. Electron. 2024, 35, 78.
- 13J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song, Z. Guo, N. Naik, Adv. Funct. Mater. 2021, 31, 2104686.
- 14K. Hu, J. Feng, N. Lv, W. Jiang, Z. Lyu, Q. Hai, J. Appl. Polym. Sci. 2022, 139, 52180.
- 15J. Zhou, L. Zhang, Z. Ji, R. Xu, Y. Jiang, J. Appl. Polym. Sci. 2024, 141, e55591.
- 16Z. Wang, L. Zhang, J. Liu, H. Jiang, C. Li, Nanoscale 2018, 10, 10691.
- 17C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, J. Bae, S. H. Lee, K. E. Byun, J. Im, Adv. Mater. 2014, 26, 3451.
- 18D. Wang, X. Zhou, R. Song, C. Fang, Z. Wang, C. Wang, Y. Huang, Chem. Eng. J. 2021, 404, 126940.
- 19Y. Wei, S. Chen, Y. Lin, Z. Yang, L. Liu, J. Mater. Chem. C 2015, 3, 9594.
- 20J. Jia, G. Huang, J. Deng, K. Pan, Nanoscale 2019, 11, 4258.
- 21H. Niu, H. Zhang, W. Yue, S. Gao, H. Kan, C. Zhang, C. Zhang, J. Pang, Z. Lou, L. Wang, Small 2021, 17, 2100804.
- 22J. Huang, G. Xie, Q. Wei, Y. Su, X. Xu, Y. Jiang, A. C. S. Appl, Mater. Interfaces 2023, 15, 5600.
- 23S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J. Y. Park, A. C. S. Appl, Mater. Interfaces 2020, 12, 22212.
- 24J. Lee, G. Kim, D.-K. Shin, J. Park, IEEE Sens. J. 2018, 18, 9919.
- 25M. Wang, L. Dong, J. Wu, J. Shi, Q. Gao, C. Zhu, H. Morikawa, Npj Flexible Electron. 2022, 6, 34.
- 26J. Park, Y. Lee, J. Hong, M. Ha, Y.-D. Jung, H. Lim, S. Y. Kim, H. Ko, ACS Nano 2014, 8, 4689.
- 27S. Jung, J. H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D.-H. Kim, Adv. Mater. 2014, 26, 4825.
- 28S. R. A. Ruth, V. R. Feig, H. Tran, Z. Bao, Adv. Funct. Mater. 2020, 30, 2003491.
- 29Y. Luo, L. Zhao, G. Luo, L. Dong, Y. Xia, M. Li, Z. Li, K. Wang, R. Maeda, Z. Jiang, Microsyst. Nanoeng. 2023, 9, 113.
- 30P. C. Uzabakiriho, M. Wang, C. Ma, G. Zhao, Nanoscale 2022, 14, 6600.
- 31D. H. Reneker, A. L. Yarin, Polymer 2008, 49, 2387.
- 32S. S. Bhagure, A. R. Rao, Int. J. Innov. Sci. Res. Technol. 2020, 5, 528.
- 33R. Li, M. Panahi-Sarmad, T. Chen, A. Wang, R. Xu, X. Xiao, A. C. S. Appl, Electron. Mater. 2022, 4, 469.
- 34C. Wang, C. Ma, X. Wu, M. Li, S. Lu, P. Dai, A. C. S. Appl, Electron. Mater. 2023, 5, 6334.
- 35B. Xue, H. Xie, J. Zhao, J. Zheng, C. Xu, Nanomaterials 2022, 12, 723.
- 36H. Liu, M. Dong, W. Huang, J. Gao, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen, Z. Guo, J. Mater. Chem. C 2017, 5, 73.
- 37P. Kumar, G. Andersson, K. M. Subhedar, H. S. Dhami, G. Gupta, A. K. Mukhopadhyay, R. P. Joshi, Ceram. Int. 2021, 47, 14862.
- 38V. Panwar, A. Chattree, K. Pal, Phys. E. 2015, 73, 235.
- 39W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng, K. Müllen, Am. Ethnol. 2014, 126, 1596.
- 40Y. Wang, W. Li, Y. Zhou, L. Jiang, J. Ma, S. Chen, S. Jerrams, F. Zhou, J. Mater. Sci. 2020, 55, 12592.
- 41S. H. Hong, S. Hong, M.-H. Ryou, J. W. Choi, S. M. Kang, H. Lee, Adv. Mater. Interfaces 2016, 3, 3.
- 42J. Wang, H. Guo, X. Shi, Z. Yao, W. Qing, F. Liu, C. Y. Tang, J. Colloid Interface Sci. 2019, 535, 239.
- 43P. Alves, S. Pinto, H. C. de Sousa, M. H. Gil, J. Appl. Polym. Sci. 2011, 122, 2302.
- 44L. Shanmugam, X. Feng, J. Yang, Compos. Sci. Technol. 2019, 174, 212.
- 45S. Yang, K. Ding, W. Wang, T. Wang, H. Gong, D. Shu, Z. Zhou, L. Jiao, B. Cheng, Y. Ni, Chem. Eng. J. 2022, 431, 133700.
- 46T. Yang, W. Deng, X. Chu, X. Wang, Y. Hu, X. Fan, J. Song, Y. Gao, B. Zhang, G. Tian, ACS Nano 2021, 15, 11555.