Mechanically robust and highly electrochemical performance of polyethylene oxide gel polymer electrolyte
Bihui Jin
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, China
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei, China
Contribution: Data curation (lead), Investigation (lead), Methodology (lead), Software (lead), Validation (lead), Writing - original draft (lead)
Search for more papers by this authorYunyang Zhao
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, China
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei, China
Contribution: Investigation (equal), Methodology (equal), Software (equal), Writing - original draft (equal)
Search for more papers by this authorCorresponding Author
Dezhan Ye
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, China
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei, China
Correspondence
Dezhan Ye, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Yangguang Avenue, Jiangxia District, Wuhan, Hubei 430200, China.
Email: [email protected]
Xianke Ye, Hubei Kediya Technology Company, Yunlong Avenue, Zengdu District, Suizhou, Hubei 441300, China.
Email: [email protected]
Contribution: Supervision (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorXiancai Jiang
School of Chemical Engineering, Fuzhou University, Fuzhou, China
Contribution: Formal analysis (lead), Investigation (supporting), Methodology (supporting)
Search for more papers by this authorCorresponding Author
Xianke Ye
Hubei Kediya Technology Company, Suizhou, Hubei, China
Correspondence
Dezhan Ye, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Yangguang Avenue, Jiangxia District, Wuhan, Hubei 430200, China.
Email: [email protected]
Xianke Ye, Hubei Kediya Technology Company, Yunlong Avenue, Zengdu District, Suizhou, Hubei 441300, China.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (supporting), Funding acquisition (equal), Resources (lead), Supervision (equal)
Search for more papers by this authorChen Li
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei, China
Contribution: Data curation (supporting), Formal analysis (supporting), Resources (equal), Supervision (supporting), Writing - review & editing (equal)
Search for more papers by this authorBihui Jin
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, China
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei, China
Contribution: Data curation (lead), Investigation (lead), Methodology (lead), Software (lead), Validation (lead), Writing - original draft (lead)
Search for more papers by this authorYunyang Zhao
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, China
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei, China
Contribution: Investigation (equal), Methodology (equal), Software (equal), Writing - original draft (equal)
Search for more papers by this authorCorresponding Author
Dezhan Ye
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, China
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei, China
Correspondence
Dezhan Ye, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Yangguang Avenue, Jiangxia District, Wuhan, Hubei 430200, China.
Email: [email protected]
Xianke Ye, Hubei Kediya Technology Company, Yunlong Avenue, Zengdu District, Suizhou, Hubei 441300, China.
Email: [email protected]
Contribution: Supervision (lead), Writing - original draft (equal), Writing - review & editing (lead)
Search for more papers by this authorXiancai Jiang
School of Chemical Engineering, Fuzhou University, Fuzhou, China
Contribution: Formal analysis (lead), Investigation (supporting), Methodology (supporting)
Search for more papers by this authorCorresponding Author
Xianke Ye
Hubei Kediya Technology Company, Suizhou, Hubei, China
Correspondence
Dezhan Ye, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Yangguang Avenue, Jiangxia District, Wuhan, Hubei 430200, China.
Email: [email protected]
Xianke Ye, Hubei Kediya Technology Company, Yunlong Avenue, Zengdu District, Suizhou, Hubei 441300, China.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (supporting), Funding acquisition (equal), Resources (lead), Supervision (equal)
Search for more papers by this authorChen Li
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei, China
Contribution: Data curation (supporting), Formal analysis (supporting), Resources (equal), Supervision (supporting), Writing - review & editing (equal)
Search for more papers by this authorBihui Jin and Yunyang Zhao contributed equally to the work.
Abstract
Synthesizing high-performance of gel polymer electrolytes (GPEs) with simple methods and common materials has long been a crucial concern for lithium-ion batteries. Here, the poor mechanical properties of polyethylene oxide (PEO) based GPEs were overcome by introducing strong hydrogen bond between PEO and polyacrylic acid (PAA). Easy-available PEO/PAA membranes were prepared though hot processing approach without use of organic solvent during all processes. The mechanical properties and crystalline of dry composites could be tuned by the addition content of PAA. After quick absorbing electrolyte in 30 min, the tensile strength and elongation at break of the GPEs composites are ranged from 0.07 to 0.63 MPa, and 525% to 722%. Moreover, the lithium-ion conductivity and transference number with 30 wt% addition of PAA reach up to 1.66 and 0.58 mS/cm, respectively. After 500 cycling at 0.5 C, the discharge specific capacity and the capacity retention rate are still up to 134.1 mAh/g and 88.7%, respectively. This research proves the great possibility of applying environmentally friendly method, low cost, and high electrochemical performances of PEO/PAA based GPEs in the lithium batteries.
CONFLICT OF INTEREST STATEMENT
There are no conflicts to declare.
Open Research
DATA AVAILABILITY STATEMENT
The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.
Supporting Information
Filename | Description |
---|---|
app55176-sup-0001-Supinfo.docxWord 2007 document , 814.7 KB | Figure S1. The optical photographs of composites before and after liquid electrolyte absorption (from left to right is dry composite, PEA-2, PEA-3 and PEA-4). Figure S2. The impedance of PEO/PAA composites gels at different temperatures: a, PEA-2; b, PEA-3; c, LB001 with commercial separator. Figure S3. Cation transference number of PEA-2 by CA and EIS before and after CA test. Figure S4. The EIS plots of Li/PEA composite gels/LiFePO4 cell at different cycles (1st, 6th and 100th cycles): a, PEA-2; b, PEA-3; c, LB001 with commercial separator. Table S1. Bulk impedance (Rs) and interfacial impedance (Rct) of PEA-2, PEA-3 and LB001 with PE commercial separator calculated from EIS plots of Li/PEA composite gels/LiFePO4 cell at different cycles (1st, 6th and 100th cycles). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1M. J. Lee, J. Han, K. Lee, Y. J. Lee, B. G. Kim, K.-N. Jung, B. J. Kim, S. W. Lee, Nature 2022, 601, 217.
- 2C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena, J. Zheng, M. N. Garaga, B. H. Ko, Y. Mao, S. He, Y. Gao, P. Wang, M. Tyagi, F. Jiao, R. Briber, P. Albertus, C. Wang, S. Greenbaum, Y.-Y. Hu, A. Isogai, M. Winter, K. Xu, Y. Qi, L. Hu, Nature 2021, 598, 590.
- 3Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee, K. Kim, E. Nakamura, A. Yamada, Nat. Energy 2020, 5, 291.
- 4X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, K. Amine, K. Xu, C. Wang, Nat. Nanotechnol. 2018, 13, 715.
- 5P. Lv, J. Yang, G. Liu, H. Liu, S. Li, C. Tang, J. Mei, Y. Li, D. Hui, Composites Part B 2017, 120, 35.
- 6H. Hou, Q. Xu, Y. Pang, L. Li, J. Wang, C. Zhang, C. Sun, Adv. Sci. (Weinh) 2017, 4, 1700072.
- 7S. Li, N. Li, C. Sun, Inorg. Chem. Front. 2021, 8, 361.
- 8C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, J. Zhang, Nano Energy 2017, 33, 363.
- 9S. Popa, S. Iliescu, G. Ilia, N. Plesu, A. Popa, A. Visa, L. Macarie, Eur. Polym. J. 2017, 94, 286.
- 10Y. Zhang, W. Cai, R. Rohan, M. Pan, Y. Liu, X. Liu, C. Li, Y. Sun, H. Cheng, J. Power Sources 2016, 306, 152.
- 11K. Z. Walle, L. Musuvadhi Babulal, S. H. Wu, W. C. Chien, R. Jose, S. J. Lue, J. K. Chang, C. C. Yang, ACS Appl. Mater. Interfaces 2021, 13, 2507.
- 12W. Shen, K. Li, Y. Lv, T. Xu, D. Wei, Z. Liu, Adv. Energy Mater. 2020, 10. https://doi.org/10.1002/aenm.201904281
10.1002/aenm.201904281 Google Scholar
- 13H. Li, J. Yang, S. Chen, Z. Xu, J. Wang, Y. Nuli, Y. Guo, C. Liang, Chem. Eng. J. 2021, 410, 128415.
- 14Y. Huang, Y. Wang, Y. Fu, Composites, Part B 2022, 230, 109501.
- 15L. Porcarelli, P. S. Vlasov, D. O. Ponkratov, E. I. Lozinskaya, D. Y. Antonov, J. R. Nair, C. Gerbaldi, D. Mecerreyes, A. S. Shaplov, Eur. Polym. J. 2018, 107, 218.
- 16J. Gou, W. Liu, A. Tang, H. Xie, Eur. Polym. J. 2021, 158, 110703.
- 17M. Hamrahjoo, S. Hadad, E. Dehghani, M. Salami-Kalajahi, H. Roghani-Mamaqani, Eur. Polym. J. 2022, 173, 111276.
- 18A. Chiappone, C. Gerbaldi, I. Roppolo, N. Garino, R. Bongiovanni, Polymer 2015, 75, 64.
- 19Z. Chen, Y. Yang, Q. Su, S. Huang, D. Song, R. Ma, C. Zhu, G. Lv, C. Li, ACS Appl. Mater. Interfaces 2021, 13, 41946.
- 20S. D. Tillmann, P. Isken, A. Lex-Balducci, J. Power Sources 2014, 271, 239.
- 21T. C. Nirmale, I. Karbhal, R. S. Kalubarme, M. V. Shelke, A. J. Varma, B. B. Kale, ACS Appl. Mater. Interfaces 2017, 9, 34773.
- 22R. Fang, B. Xu, N. S. Grundish, Y. Xia, Y. Li, C. Lu, Y. Liu, N. Wu, J. B. Goodenough, Angew. Chem. Int. Ed. Engl. 2021, 60, 17701.
- 23F. Zeng, Y. Sun, B. Hui, Y. Xia, Y. Zou, X. Zhang, D. Yang, ACS Appl. Mater. Interfaces 2020, 12, 43805.
- 24L. Han, C. Liao, X. Mu, N. Wu, Z. Xu, J. Wang, L. Song, Y. Kan, Y. Hu, Nano Lett. 2021, 21, 4447.
- 25J. Cheng, G. Hou, Q. Sun, Z. Liang, X. Xu, J. Guo, L. Dai, D. Li, X. Nie, Z. Zeng, P. Si, L. Ci, Solid State Ionics 2020, 345, 115156.
- 26X. Shen, R. Li, H. Ma, L. Peng, B. Huang, P. Zhang, J. Zhao, Solid State Ionics 2020, 354, 115412.
- 27J. Qiu, X. Liu, R. Chen, Q. Li, Y. Wang, P. Chen, L. Gan, S.-J. Lee, D. Nordlund, Y. Liu, X. Yu, X. Bai, H. Li, L. Chen, Adv. Funct. Mater. 2020, 30, 1909392.
- 28S. Xu, Z. Sun, C. Sun, F. Li, K. Chen, Z. Zhang, G. Hou, H.-M. Cheng, F. Li, Adv. Funct. Mater. 2020, 30, 2007172.
- 29D. Cai, X. Wu, J. Xiang, M. Li, H. Su, X. Qi, X. Wang, X. Xia, C. Gu, J. Tu, Chem. Eng. J. 2021, 424, 130522.
- 30X. Ye, W. Xiong, T. Huang, X. Li, Y. Lei, Y. Li, X. Ren, J. Liang, X. Ouyang, Q. Zhang, J. Liu, Appl. Surf. Sci. 2021, 569, 150899.
- 31H. Wu, Y. Cao, H. Su, C. Wang, Angew. Chem. Int. Ed. 2018, 57, 1361.
- 32M. X. Li, X. W. Wang, Y. Q. Yang, Z. Chang, Y. P. Wu, R. Holze, J. Membr. Sci. 2015, 476, 112.
- 33Y. Zhu, S. Xiao, Y. Shi, Y. Yang, Y. Wu, J. Mater. Chem. A 2013, 1, 7790.
- 34S. Zou, R. Lv, Z. Tong, B. Na, K. Fu, H. Liu, Polymer 2019, 183, 121878.
- 35M. Brogly, S. Bistac, D. Bindel, Appl. Surf. Sci. 2022, 603, 154428.
- 36Z. Zhang, Y. Huang, H. Gao, C. Li, J. Huang, P. Liu, J. Membr. Sci. 2021, 621, 118940.
- 37L. He, W.-H. Liang, J.-H. Cao, D.-Y. Wu, ACS Appl. Energy Mater. 2022, 5, 5277.
- 38V. Jabbari, V. Yurkiv, M. G. Rasul, M. T. Saray, R. Rojaee, F. Mashayek, R. Shahbazian-Yassar, Energy Storage Mater. 2022, 46, 352.
- 39K. Chrissopoulou, K. S. Andrikopoulos, S. Fotiadou, S. Bollas, C. Karageorgaki, D. Christofilos, G. A. Voyiatzis, S. H. Anastasiadis, Macromolecules 2011, 44, 9710.
- 40J.-F. Zhang, D.-Z. Yang, F. Xu, Z.-P. Zhang, R.-X. Yin, J. Nie, Macromolecules 2009, 42, 5278.
- 41Z. Wang, L. Ouyang, H. Li, L. Wagberg, M. M. Hamedi, Small 2021, 17, 2100954.
- 42K. Borzutzki, J. Thienenkamp, M. Diehl, M. Winter, G. Brunklaus, J. Mater. Chem. A 2019, 7, 188.
- 43H. Liao, H. Chen, F. Zhou, Z. Zhang, H. Chen, J. Power Sources 2019, 435, 226748.