Copolyimide molecular brushes with poly(methacrylic acid) side chains as additive to polyphthalamide membrane: Organization, physical, and transport properties
Corresponding Author
Ivan V. Ivanov
Biomimetic Polymer Materials, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Correspondence
Ivan V. Ivanov, Biomimetic Polymer Materials, Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia.
Email: [email protected]
Contribution: Conceptualization (equal), Investigation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorGalina A. Polotskaya
Physical Chemistry of Polymers, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Contribution: Conceptualization (equal), Investigation (lead), Methodology (lead), Validation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorIvan S. Kuryndin
Physical Chemistry of Polymers, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorMaria P. Sokolova
Polymer Biomaterials and Systems, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorAlexander V. Yakimansky
Polymer Nanomaterials and Compositions for Optical Media, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Contribution: Conceptualization (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Ivan V. Ivanov
Biomimetic Polymer Materials, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Correspondence
Ivan V. Ivanov, Biomimetic Polymer Materials, Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31, 199004 St. Petersburg, Russia.
Email: [email protected]
Contribution: Conceptualization (equal), Investigation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorGalina A. Polotskaya
Physical Chemistry of Polymers, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Contribution: Conceptualization (equal), Investigation (lead), Methodology (lead), Validation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorIvan S. Kuryndin
Physical Chemistry of Polymers, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorMaria P. Sokolova
Polymer Biomaterials and Systems, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorAlexander V. Yakimansky
Polymer Nanomaterials and Compositions for Optical Media, Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
Contribution: Conceptualization (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Macromolecules of complex architecture find application as modifiers of commercial polymeric membrane materials. In this work, copolyimide molecular brushes (coPI) composed of polyimide backbone and poly(methacrylic acid) side chains were used to modify poly(m-phenylene iso-phthalamide) (PPA). Structure, physical, mechanical, and transport properties of dense nonporous PPA/coPI membranes containing up to 10 wt% coPI were studied. The effect of included coPI on the membrane structure was estimated using atomic force microscopy and mechanical tests. The coPI modifier contributes to the additional formation of free volume elements evenly distributed throughout the membrane. Transport properties of PPA/coPI membranes were investigated via sorption tests and pervaporation separation of methanol (MeOH) and methyl tert-butyl ether (MTBE) mixtures. The inclusion of coPI modifier in the PPA membrane leads to an increase in the total flux of the membrane. The highest separation factor was found for the PPA/coPI membrane containing 10 wt% coPI; transport properties of the best membrane were compared with the literature data on separation of the azeotropic MeOH–MTBE mixture.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- 1Z. Z. Denchev, N. V. Dencheva, Polym. Int. 2008, 57, 11.
- 2D. R. Paul, L. M. Robeson, Polymer 2008, 49, 3187.
- 3D. Lasrado, S. Ahankari, K. Kar, J. Appl. Polym. Sci. 2020, 137, 48959.
- 4D. R. Paul, S. Newman, Polymer Blends, Academic Press, New York, NY, USA 1978.
10.1016/B978-0-12-546802-2.50012-9 Google Scholar
- 5L. Iannarelli, R. Nisticò, P. Avetta, M. Lazzari, G. Magnacca, P. Calza, D. Fabbri, D. Scalarone, Eur. Polym. J. 2015, 62, 108.
- 6M. Loloei, A. Moghadassi, M. Omidkhah, A. E. Amooghin, Greenhouse Gases Sci. Technol. 2015, 5, 530.
- 7S. Quan, Y. P. Tang, Z. X. Wang, Z. X. Jiang, R. G. Wang, Y. Y. Liu, L. Shao, Macromol. Rapid Commun. 2015, 36, 490.
- 8J. Hradil, P. Sysel, L. Brožová, J. Kovářová, J. Kotek, React. Funct. Polym. 2007, 67, 432.
- 9G. S. Golubev, I. L. Borisov, E. G. Litvinova, V. S. Khotimsky, D. S. Bakhtin, A. V. Pastukhov, V. A. Davankov, V. V. Volkov, Pet. Chem. 2017, 57, 498.
- 10K. Yamauchi, S. Akasaka, H. Hasegawa, H. Iatrou, N. Hadjichristidis, Macromolecules 2005, 38, 8022.
- 11E. Folgado, V. Ladmiral, M. Semsarilar, Eur. Polym. J. 2020, 131, 109708.
- 12X. S. Shao, J. H. Li, Q. Zhou, J. Miao, Q. Q. Zhang, J. Appl. Polym. Sci. 2013, 129, 2472.
- 13G. A. Polotskaya, E. L. Krasnopeeva, L. M. Kalyuzhnaya, N. N. Saprykina, L. V. Vinogradova, Sep. Purif. Technol. 2015, 143, 192.
- 14A. Pulyalina, D. Porotnikov, D. Rudakova, I. Faykov, I. Chislova, V. Rostovtseva, L. Vinogradova, A. Toikka, G. Polotskaya, Chem. Eng. Res. Des. 2018, 135, 197.
- 15A. Pulyalina, V. Rostovtseva, G. Polotskaya, L. Vinogradova, Z. Zoolshoev, M. Simonova, A. Hairullin, A. Toikka, Z. Pientka, Polymer 2019, 172, 335.
10.1016/j.polymer.2019.04.005 Google Scholar
- 16G. Polotskaya, A. Pulyalina, V. Lebedev, G. Török, D. Rudakova, L. Vinogradova, Mater. Des. 2020, 186, 108352.
- 17V. Rostovtseva, A. Pulyalina, D. Rudakova, L. Vinogradova, G. Polotskaya, Membranes 2020, 10, 86.
- 18S. S. Sheiko, B. S. Sumerlin, K. Matyjaszewski, Prog. Polym. Sci. 2008, 33, 759.
- 19M. Müllner, A. H. E. Müller, Polymer 2016, 98, 389.
- 20X. Solimando, J. Babin, C. Arnal-Herault, D. Roizard, D. Barth, M. Poncot, I. Royaud, P. Alcouffe, L. David, A. Jonquieres, Polymer 2022, 255, 125164.
- 21C. M. Yun, E. Akiyama, T. Yamanobe, H. Uehara, Y. Nagase, Polymer 2016, 103, 214.
- 22N. Tian, T. Meleshko, G. Polotskaya, I. Gofman, A. Kashina, N. Kukarkina, E. Vlasova, Z. Zoolshoev, A. Yakimansky, Polym. Eng. Sci. 2020, 60, 481.
- 23N. S. Tyan, G. A. Polotskaya, T. K. Meleshko, A. V. Yakimansky, Z. Pientka, Rus. J. Appl. Chem. 2019, 92, 360.
- 24T. K. Meleshko, A. Y. Pulyalina, N. S. Tyan, G. A. Polotskaya, I. V. Ivan0ov, N. V. Kukarkina, A. M. Toikka, A. V. Yakimansky, Polym. Sci. Ser. B. 2017, 59, 183.
- 25N. S. Tian, T. K. Meleshko, G. A. Polotskaya, A. V. Kashina, I. V. Gofman, Z. F. Zoolshoev, V. K. Lavrentyev, Z. Pientka, A. V. Yakimansky, J. Appl. Polym. Sci. 2020, 137, 49543.
- 26R. Castro-Muñoz, F. Galiano, V. Fíla, E. Drioli, A. Figoli, Rev. Chem. Eng. 2019, 35, 565.
- 27Y. K. Ong, G. M. Shi, N. L. Le, Y. P. Tang, J. Zuo, S. P. Nunes, T.-S. Chung, Prog. Polym. Sci. 2016, 57, 1.
- 28G. Polotskaya, M. Goikhman, I. Podeshvo, N. Loretsyan, N. Saprykina, I. Gofman, N. Tian, R. Dubovenko, A. Pulyalina, J. Appl. Polym. Sci. 2021, 139, 51646.
- 29S. Roy, N. R. Singha, Membranes 2017, 7, 53.
- 30M. Winterberg, E. Schulte-Korne, U. Peters, F. Nierlich, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany 2010.
- 31A. Y. Pulyalina, M. N. Putintseva, G. A. Polotskaya, V. A. Rostovtseva, A. M. Toikka, Membr. Membr. Technol 2019, 1, 99.
- 32G. Polotskaya, N. Tian, I. Faykov, M. Goikhman, I. Podeshvo, N. Loretsyan, I. Gofman, K. Zolotovsky, A. Pulyalina, Membranes 2023, 13, 160.
- 33J. H. Badia, E. Ramírez, R. Bringué, F. Cunill, J. Delgado, Energy Fuels 2021, 35, 10949.
- 34R. Castro-Muñoz, F. Galiano, V. Fíla, E. Drioli, A. Figoli, Sep. Purif. Technol. 2018, 199, 27.
- 35S. Zereshki, A. Figoli, S. S. Madaeni, S. Simone, M. Esmailinezhad, E. Drioli, J. Membr. Sci. 2011, 371, 1.
- 36H. Wu, X. Fang, X. Zhang, Z. Jiang, B. Li, X. Ma, Sep. Purif. Technol. 2008, 64, 183.
- 37Y. Wang, L. Yang, G. Luo, Y. Dai, Chem. Eng. J. 2009, 146, 6.
- 38G. A. Polotskaya, I. S. Kuryndin, N. N. Saprykina, S. V. Bronnikov, Membr. Membr. Technol 2022, 4, 367.
- 39F. Galiano, A. H. Ghanim, K. T. Rashid, T. Marino, S. Simone, Q. F. Alsalhy, A. Figoli, Clean Technol. Environ. Policy 2019, 21, 109.
- 40A. Msahel, F. Galiano, M. Pilloni, F. Russo, A. Hafiane, R. Castro-Muñoz, V. B. Kumar, A. Gedanken, G. Ennas, Z. Porat, A. Scano, S. Ben Hamouda, A. Figoli, Membranes 2021, 11, 65.
- 41A. Y. Pulyalina, G. A. Polotskaya, M. Y. Goikhman, I. V. Podeshvo, N. S. Gulii, S. M. Shugurov, M. V. Tataurov, A. M. Toikka, Polym. Int. 1873, 2017, 66.
- 42A. V. Penkova, G. A. Polotskaya, V. A. Gavrilova, A. M. Toikka, J. C. Liu, M. Trchová, M. Šlouf, Z. Pientka, Sep. Sci. Technol. 2010, 45, 35.
- 43A. V. Penkova, G. A. Polotskaya, A. M. Toikka, M. Trhova, M. Slouf, M. Urbanova, J. Brus, L. Brozova, Z. Pientka, Macromol. Mater. Eng. 2009, 294, 432.
- 44N. Avagimova, G. Polotskaya, N. Saprykina, A. Toikka, Z. Pientka, Sep. Sci. Technol. 2013, 48, 2513.
- 45A. V. Penkova, A. I. Kuzminova, M. E. Dmitrenko, V. A. Surkova, V. P. Liamin, D. A. Markelov, A. V. Komolkin, D. Y. Poloneeva, A. V. Laptenkova, A. A. Selyutin, Sep. Purif. Technol. 2021, 263, 118370.
- 46M. Tian, Q. Liu, W. Li, X. You, C. Liu, J. D. Fortner, J. Membr. Sci. 2022, 657, 120674.
- 47N. Avagimova, G. Polotskaya, A. Toikka, A. Pulyalina, Z. Morávková, M. Trchová, Z. Pientka, J. Appl. Polym. Sci. 2018, 135, 1.
10.1002/app.46320 Google Scholar
- 48M. E. Dmitrenko, A. V. Penkova, A. I. Kuzminova, R. R. Atta, A. A. Zolotarev, A. S. Mazur, O. S. Vezo, E. Lahderanta, D. A. Markelov, S. S. Ermakov, Sep. Purif. Technol. 2019, 226, 241.
- 49T. K. Meleshko, I. V. Ivanov, A. V. Kashina, N. N. Bogorad, M. A. Simonova, N. V. Zakharova, A. P. Filippov, A. V. Yakimansky, Polym. Sci. Ser. B. 2018, 60, 35.
- 50R. W. Baker, Membrane Technology and Applications, Wiley, Newark, CA, USA 2012.
10.1002/9781118359686 Google Scholar
- 51P. J. Flory, Principles of polymer chemistry, Cornell University Press, New York, NY, USA 1953.
- 52M. Khayet, J. P. G. Villaluenga, M. P. Godino, J. I. Mengual, B. Seoane, K. C. Khulbe, T. Matsuura, J. Colloid Interface Sci. 2004, 278, 410.
- 53R. W. Baker, J. G. Wijmans, Y. Huang, J. Membr. Sci. 2010, 348, 346.
- 54A. F. M. Barton, Handbook of solubility parameters and other cohesion parameters, CRC Press, Boca Raton, FL, USA 1991.
- 55R. Y. Huang, Pervaporation Membrane Separation Processes, Elsevier, Amsterdam, Netherlands 1991.
- 56A. M. Toikka, J. D. Jenkins, Chem. Eng. J. 2002, 89, 1.
- 57V. B. Kogan, V. M. Fridman, V. V. Kafarov, The Equilibrium Between a Liquid and a Vapor (In Russian), Book 2, Nauka, Moscow–Leningrad, USSR 1966.
- 58R. Y. M. Huang, G. Y. Moon, R. Pal, J. Memb. Sci. 2001, 184, 1.
- 59S. Zereshki, A. Figoli, S. S. Madaeni, S. Simone, E. Drioli, J. Appl. Polym. Sci. 2010, 118, 1364.