Emission characteristics of volatile organic compounds from regenerated PET fibers based on the headspace gas chromatograph
Shanshan Liu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorFuyou Ke
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorMingyue Shi
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorChaosheng Wang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Data curation (equal), Investigation (equal), Methodology (equal), Supervision (equal), Writing - original draft (equal)
Search for more papers by this authorCorresponding Author
Ye Chen
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Correspondence
Ye Chen, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorHuaping Wang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Conceptualization (equal), Data curation (equal), Funding acquisition (supporting), Investigation (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorShanshan Liu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorFuyou Ke
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorMingyue Shi
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorChaosheng Wang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Data curation (equal), Investigation (equal), Methodology (equal), Supervision (equal), Writing - original draft (equal)
Search for more papers by this authorCorresponding Author
Ye Chen
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Correspondence
Ye Chen, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China.
Email: [email protected]
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorHuaping Wang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
Contribution: Conceptualization (equal), Data curation (equal), Funding acquisition (supporting), Investigation (equal), Methodology (equal), Project administration (equal), Resources (equal), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorFunding information: Key Project of SINOPEC, Grant/Award Number: HT 217011-5; National Key Research and Development Program, Grant/Award Number: 2016YFB0302900; Program for Zhejiang Leading Team of Innovation and Entrepreneurship, Grant/Award Number: 2019R01011
Abstract
The emission behaviors of volatile organic compounds (VOCs) can be characterized by the key parameters: the initial concentration (m0), partition coefficient (K) and the diffusion coefficient (D). The MHE-GC method was validated to determine the emission characteristics of VOCs (Benzene, Toluene, Ethylbenzene, P-xylene, M-xylene, Styrene, and O-xylene) in regenerated PET fibers. This work has studied the effects of fiber size, sample weight incubation time and incubation temperature on the detection of these VOCs. It showed finer fiber sample with less sample facilitated the emission of VOCs in fibers above detectable limit. The optimized headspace incubation time, fiber sample weight, and headspace incubation temperature were selected as 60 min, about 0.8 g and 110 °C, respectively. In addition, incubation temperature has a negative effect on the gas/fiber partition coefficient. The fibers with greater fineness showed higher activation energy, which revealed a positive release of VOCs from fibers. The relative standard deviation (RSD/%) of detection was 3%–10%. The present method is reliable and suitable for use in testing of the VOCs content in fiber-related materials.
CONFLICTS OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1J. Payne, M. D. Jones, ChemSusChem 2021, 14, 4041.
- 2P. Athanasopoulos, A. Zabaniotou, Sci. Total Environ. 2022, 834, 155387.
- 3T. Lomonaco, E. Manco, A. Corti, J. La Nasa, S. Ghimenti, D. Biagini, F. Di Francesco, F. Modugno, A. Ceccarini, R. Fuoco, V. Castelvetro, J. Hazard. Mater. 2020, 394, 463547.
- 4S. S. Liu, Y. Chen, Y. H. Wang, L. L. Gao, F. Y. Ke, C. S. Wang, H. P. Wang, Mater. Sci. Forum 2020, 993, 1511.
10.4028/www.scientific.net/MSF.993.1511 Google Scholar
- 5Z. Rouf, I. Y. Dar, M. Javaid, M. Y. Dar, A. Jehangir, in Ecological and Health Effects of Building Materials (Eds: J. A. Malik, S. Marathe), Springer International Publishing, Cham 2022.
10.1007/978-3-030-76073-1_5 Google Scholar
- 6X. J. Zhou, J. L. Lian, Y. Cheng, X. K. Wang, Environ. Res. 2021, 194, 110681.
- 7H. M. Wang, J. H. Zheng, T. Yang, Z. C. He, P. Zhang, X. F. Liu, M. X. Zhang, L. H. Sun, X. F. Yu, J. Zhao, X. Y. Liu, B. P. Xu, L. P. Tong, J. Y. Xiong, Environ. Int. 2020, 142, 105817.
- 8C. Y. Zhang, Z. N. Wu, Z. H. Li, H. F. Li, J. M. Lin, Langmuir 2020, 36, 5078.
- 9A. Cabanes, M. Strangl, E. Ortner, A. Fullana, A. Buettner, Waste Manage. 2020, 104, 228.
- 10S. Fabris, M. T. D. Freire, R. Wagner, F. G. Reyes, Ciencia E Tecnologia De Alimentos. 2010, 30, 1046.
10.1590/S0101-20612010000400033 Google Scholar
- 11A. Cabanes, A. Fullana, Sci. Total Environ. 2021, 758, 144066.
- 12R. Demets, M. Roosen, L. Vandermeersch, K. Ragaert, C. Walgraeve, S. De Meester, Resour. Conserv. Recy. 2020, 161, 104907.
- 13T. de Somer, M. Roosen, L. Harinck, K. M. van Geem, S. de Meester, Resour. Conserv. Recy. 2022, 182, 106267.
- 14S. S. Liu, J. Y. Hu, F. Y. Ke, H. Jiang, C. X. Zhang, C. S. Wang, Y. Chen, H. P. Wang, J. Text. 2022, 1. https://doi.org/10.1080/00405000.2022.2109109
10.1080/00405000.2022.2109109 Google Scholar
- 15S. Wojtyla, P. Klama, T. Baran, J. Occup. Environ. Hyg. 2017, 14, 1285489.
- 16J. C. Barros-Castillo, M. Calderón-Santoyo, G.-M. M. d. L., C. Calderón-Chiu, J. A. Ragazzo-Sánchez, J. Food Compos. Anal. 2022, 113, 104701.
- 17S. Q. Huang, G. L. Li, Y. H. Luo, H. J. Lan, X. C. Li, C. Kang, L. Shuai, H. Nie, Food Chem. Adv. 2022, 1, 100072.
10.1016/j.focha.2022.100072 Google Scholar
- 18M. Even, M. Girard, A. Rich, C. Hutzler, A. Luch, Front. Public Health. 2019, 7, 202.
- 19E. Baysal, U. C. Uzun, F. N. Ertas, O. Goksel, L. Pelit, Chemosphere 2021, 277, 130251.
- 20Y. Xiao, Y. X. Huang, Y. L. Chen, M. Z. Zhu, C. He, Z. J. Li, Y. L. Wang, Z. H. Liu, LWT. 2022, 169, 113925.
- 21Q. Y. Zhao, Z. Y. Zhao, R. Z. Rao, Y. Yang, S. Y. Ling, F. K. Bi, X. Y. Shi, J. C. Xu, G. Lu, X. D. Zhang, J. Colloid Interf. Sci. 2022, 627, 385.
- 22D. P. Li, R. K. Su, X. C. Ma, Z. Zeng, L. Q. Li, H. Q. Wang, Appl. Surf. Sci. 2022, 605, 154708.
- 23R. el Khawaja, S. Sonar, T. Barakat, N. Heymans, B.-L. Su, A. Löfberg, J.-F. Lamonier, J.-M. Giraudon, G. De Weireld, C. Poupin, R. Cousin, S. Siffert, Catal. Today 2022, 5, 22.
- 24X. D. Zhang, F. K. Bi, Z. Y. Zhao, Y. Yang, Y. T. Li, L. Song, N. Liu, J. C. Xu, L. F. Cui, J. Catal. 2022, 413, 59.
- 25Z. P. Rao, G. H. Lu, L. Chen, A. Mahmood, G. S. Shi, Z. x. Tang, X. F. Xie, J. Sun, Chem. Eng. J. 2022, 430, 132766.
- 26Y. Yang, S. H. Zhao, F. K. Bi, J. F. Chen, Y. X. Wang, L. F. Cui, J. C. Xu, X. D. Zhang, Appl. Catal. B-Environ. 2022, 315, 121550.
- 27Y. Yang, S. H. Zhao, F. K. Bi, J. F. Chen, Y. T. Li, L. F. Cui, J. C. Xu, X. D. Zhang, Science 2022, 3, 101011.
- 28T. Yang, P. P. Zhang, B. P. Xu, J. Y. Xiong, Int. J. Heat Mass. Tran. 2017, 110, 671.
- 29H. M. Wang, J. Y. Xiong, W. J. Wei, Environ. Int. 2022, 168, 107451.
- 30Y. X. Zhang, C. H. Wei, B. Yan, Sci. Total Environ. 2019, 693, 133417.
- 31X. S. Chai, J. Y. Zhu, Anal. Chem. 1998, 70, 3481.
- 32C. Y. Zhang, X. S. Chai, J. Chromatogr. A. 2015, 1385, 124.
- 33C. Y. Zhang, H. C. Hu, X. S. Chai, L. Pan, X. M. Xiao, J. Chromatogr. A. 2014, 1328, 80.
- 34C. Y. Zhang, X. S. Chai, D. G. Barnes, Fluid. Phase. Equilibr. 2015, 399, 74.
- 35M. T. Hou, H. X. Ren, W. Q. Cheng, L. J. Li, S. Zhang, Y. X. Chen, C. F. Yu, F. J. Li, S. Y. Tian, Z. Deng, Polym. Test. 2022, 107, 107474.
- 36Y. K. Zhao, J. L. Huang, Y. Zheng, C. A. Lei, Y. Y. Wang, Fuel 2022, 329, 125365.
- 37Z. Y. Fan, J. M. Zhao, X. Y. Liu, B. Luo, L. Zhou, D. P. Nie, Y. Y. Wu, Z. H. Kang, W. L. Tao, J. Chromatogr. A. 2022, 1683, 463547.
- 38X. L. Wu, W. Li, C. Li, J. X. Yin, T. Wu, M. Zhang, L. M. Zhu, H. J. Chen, X. L. Zhang, S. T. Bie, F. Y. Li, X. B. Song, X. C. Gong, H. S. Yu, Z. Li, Arab. J. Chem. 2022, 15, 104231.
- 39H. C. Hu, Y. X. Tian, H. J. Jin, X. S. Chai, D. G. Barnes, J. Agr. Food Chem. 2013, 61, 9362.
- 40C. Y. Zhang, H. C. Hu, X. S. Chai, L. Pan, X. M. Xiao, J. Chromatogr. A. 2013, 1310, 121.
- 41G. Ouyang. In Handbook of Solid Phase Microextraction, Elsevier, Netherlands 2012.
- 42S. X. Zhang, X. S. Chai, B. X. Huang, X. X. Mai, J. Chromatogr. A. 2015, 1406, 94.