Human-lymphocyte cell friendly starch–hydroxyapatite biodegradable composites: Hydrophilic mechanism, mechanical, and structural impact
Corresponding Author
Sumit Pramanik
Composite Laboratory, Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203 Chennai, Tamil Nadu, India
Correspondence to: S. Pramanik (E-mail: [email protected] or [email protected])Search for more papers by this authorPratibha Agarwala
Composite Laboratory, Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203 Chennai, Tamil Nadu, India
Department of Medicinal Chemistry, Central University of Punjab, Punjab, India
Search for more papers by this authorKharthik Vasudevan
Composite Laboratory, Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203 Chennai, Tamil Nadu, India
Search for more papers by this authorKoustav Sarkar
SRM Research Institute and Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203 Chennai, Tamil Nadu, India
Search for more papers by this authorCorresponding Author
Sumit Pramanik
Composite Laboratory, Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203 Chennai, Tamil Nadu, India
Correspondence to: S. Pramanik (E-mail: [email protected] or [email protected])Search for more papers by this authorPratibha Agarwala
Composite Laboratory, Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203 Chennai, Tamil Nadu, India
Department of Medicinal Chemistry, Central University of Punjab, Punjab, India
Search for more papers by this authorKharthik Vasudevan
Composite Laboratory, Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203 Chennai, Tamil Nadu, India
Search for more papers by this authorKoustav Sarkar
SRM Research Institute and Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203 Chennai, Tamil Nadu, India
Search for more papers by this authorABSTRACT
Biodegradable starch (Str) polymer was derived from potato, a plant-based natural carbohydrate polymers source, by one-pot synthesis. Hydroxyapatite (HA) was produced from goat bone by step sintering. The inexpensive starch/HA thin film composites were fabricated by customized spin coating. This study revealed that the hydrogen bond energy and distance have significant effect on glass transition temperature of the polymer. The 40 wt % HA contained starch (StrHA40) composite thin film showed excellent tensile strength (3.03 + −0.03 MPa), elongation (21.5 + −5.5%) and modulus (15.5 + −0.2 MPa) closed to human skin. The in vitro swelling and biodegradation kinetics of pristine starch and pure HA has been controlled and improved by using suitable composition. This study postulated the probable water molecule-adsorption mechanisms of pristine starch and starch/HA composite films. The StrHA40 composite showed excellent biocompatibility to the human-blood derived lymphocyte cells. Therefore, the starch/HA thin film composite-based biodegradable scaffolds developed in the present study can be an excellent potential candidate for soft tissue regeneration and/or replacement applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48913.
CONFLICT OF INTEREST
The authors declare no potential conflict of interest.
REFERENCES
- 1Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R.; Ashammakhi, N. J. Biomed. Mater. Res. B. 2008, 87(1), 197.
- 2Oliveira, A.; Pedro, A.; Arroyo, C. S.; Mano, J.; Rodriguez, G.; Roman, J. S.; Reis, R. J. Biomed. Mater. Res. B: Appl. Biomater. 2010, 92(1), 55.
- 3Salgado, A.; Coutinho, O.; Reis, R.; Davies, J. J. Biomed. Mater. Res. A. 2007, 80(4), 983.
- 4Liu, X.; Ma, P. X. Annal. Biomed. Eng. 2004, 32(3), 477.
- 5Nogueira, G. F.; Fakhouri, F. M.; de Oliveira, R. A. Carbohydr. Polym. 2018, 186, 64.
- 6Sartori, T.; Menegalli, F. C. Food Hydrocoll. 2016, 55, 210.
- 7Latfi, A. S. A.; Pramanik, S.; Poon, C. T.; Gumel, A. M.; Lai, K. W.; Annuar, M. S. M.; Pingguan-Murphy, B. J. Biomater. Appl. 2019, 33(6), 854.
- 8Gomes, M. E.; Reis, R. Int. Mater. Rev. 2004, 49(5), 274.
- 9Liu, H.; Yu, L.; Simon, G.; Dean, K.; Chen, L. Carbohydr. Polym. 2009, 77(3), 662.
- 10Guo, X.; Xiao, P.; Liu, J.; Shen, Z. J. Am. Ceram. Soc. 2005, 88(4), 1026.
- 11Pramanik, S.; Kar, K. K. Int. J. Adv. Manuf. Technol. 2013, 66(5–8), 1181.
- 12Deptuła, A.; Łada, W.; Olczak, T.; Borello, A.; Alvani, C.; Di Bartolomeo, A. J. Non-Cryst. Solids. 1992, 147, 537.
- 13Pramanik, S.; Agarwal, A. K.; Rai, K.; Garg, A. Ceram. Int. 2007, 33(3), 419.
- 14Fu, K.; Xu, Q.; Czernuszka, J.; Triffitt, J. T.; Xia, Z. Biomed. Mater. 2013, 8(6), 065007.
- 15Razali, N. A. I. M.; Pramanik, S.; Abu Osman, N. A.; Radzi, Z.; Pingguan-Murphy, B. J. Ceram. Process. Res. 2016, 17(7), 699.
- 16Ahmed, S.; Ahsan, M. Bangladesh J. Sci. Ind. Res. 2008, 43(4), 501.
10.3329/bjsir.v43i4.2240 Google Scholar
- 17Pramanik, S.; Ataollahi, F.; Pingguan-Murphy, B.; Oshkour, A. A.; Abu Osman, N. A. Sci. Rep. 2015, 5, 9806.
- 18Ataollahi Oshkour, A.; Pramanik, S.; Shirazi, S. F. S.; Mehrali, M.; Yau, Y.-H.; Abu Osman, A. N. Sci. World J. 2014, 2014, 616804.
10.1155/2014/616804 Google Scholar
- 19Boesel, L. F.; Mano, J. F.; Elvira, C.; San Roman, J.; Reis, R. L. Biodegradable Polymers and Plastics; Springer: Boston, MA, 2003; p 243.
10.1007/978-1-4419-9240-6_16 Google Scholar
- 20Boesel, L. F.; Mano, J. F.; Reis, R. L. J. Mater. Sci.-Mater. Med. 2004, 15(1), 73.
- 21Nofrarías, M.; Martínez-Puig, D.; Pujols, J.; Majó, N.; Pérez, J. F. Nutrition. 2007, 23(11–12), 861.
- 22Morrison, C.; Macnair, R.; MacDonald, C.; Wykman, A.; Goldie, I.; Grant, M. Biomaterials. 1995, 16(13), 987.
- 23Ciapetti, G.; Granchi, D.; Verri, E.; Savarino, L.; Cavedagna, D.; Pizzoferrato, A. Biomaterials. 1996, 17(13), 1259.
- 24Mendes, S. C.; Reis, R.; Bovell, Y. P.; Cunha, A.; van Blitterswijk, C. A.; de Bruijn, J. D. Biomaterials. 2001, 22(14), 2057.
- 25Jane, J. J. Macromol. Sci. Part A. 1995, 32(4), 751.
- 26Pramanik, S.; Pingguan-Murphy, B.; Cho, J.; Abu Osman, N. A. Sci. Rep. 2014, 4, 5843.
- 27Marques, A.; Reis, R.; Hunt, J. Biomaterials. 2002, 23(6), 1471.
- 28Moradi, A.; Pramanik, S.; Ataollahi, F.; Kamarul, T.; Pingguan-Murphy, B. Anal. Methods. 2014, 6(12), 4396.
- 29Puppi, D.; Piras, A. M.; Detta, N.; Ylikauppila, H.; Nikkola, L.; Ashammakhi, N.; Chiellini, F.; Chiellini, E. J. Bioact. Compat. Polym. 2011, 26(1), 20.
- 30Puri, B.; Sharma, L.; Pathania, M. Principles of Physical Chemistry. Chapter 28; Vishal Publishing: Jalandhar, 2012. p. 1033.
- 31Sarkar, K.; Han, S.-S.; Wen, K.-K.; Ochs, H. D.; Dupré, L.; Seidman, M. M.; Vyas, Y. M. J. Allergy Clin. Immunol. 2018, 142(1), 219.
- 32Sarkar, K.; Bose, A.; Chakraborty, K.; Haque, E.; Ghosh, D.; Goswami, S.; Chakraborty, T.; Laskar, S.; Baral, R. Vaccine. 2008, 26(34), 4352.
- 33Diba, M.; Kharaziha, M.; Fathi, M.; Gholipourmalekabadi, M.; Samadikuchaksaraei, A. Compos. Sci. Technol. 2012, 72(6), 716.
- 34Li, M.; Liu, P.; Zou, W.; Yu, L.; Xie, F.; Pu, H.; Liu, H.; Chen, L. J. Food Eng. 2011, 106(1), 95.
- 35Kar, K. K.; Pramanik, S. U.S. Pat. 8,652,373 B2 (2014).
- 36Stasiak, M.; Molenda, M.; Opaliński, I.; Błaszczak, W. Czech J. Food Sci. 2013, 31(4), 1212.
- 37Combrzynski, M.; Moscicki, L.; Rejak, A.; Wójtowicz, A.; Oniszczuk, T. Teka Komisji Motoryzacji i Energetyki Rolnictwa. 2013, 13, 2.
- 38Ankersen, J.; Birkbeck, A. E.; Thomson, R. D.; Vanezis, P. Proc. Inst. Mech. Eng. H. 1999, 213(6), 493.
- 39Hebeish, A.; Aly, A.; El-Shafei, A.; Zaghloul, S. Egypt. J. Chem. 2009, 52, 73.
- 40Rachtanapun, P. Carboxymethyl cellulose from papaya peel/corn starch film blends. In Kasetsart University Annual Conference, Bangkok (Thailand), 17–20 March 2009.
- 41Qin, C.; Huang, K.; Xu, H. Carbohydr. Polym. 2002, 49(3), 367.
- 42He, F.; Yang, Y.; Yang, G.; Yu, L. Z. Naturforsch. 2008, 63(3–4), 181.
- 43Haniffa, M. A. C. M.; Ching, Y. C.; Chuah, C. H.; Ching, K. Y.; Nazri, N.; Abdullah, L. C.; Nai-Shang, L. Carbohydr. Polym. 2017, 173, 91.
- 44Poletto, M.; Ornaghi, H.; Zattera, A. Materials. 2014, 7(9), 6105.
- 45Liu, P.; Yu, L.; Liu, H.; Chen, L.; Li, L. Carbohydr. Polym. 2009, 77(2), 250.
- 46Averous, L.; Fauconnier, N.; Moro, L.; Fringant, C. J. Appl. Polym. Sci. 2000, 76(7), 1117.
- 47Yu, L.; Christie, G. Carbohydr. Polym. 2001, 46(2), 179.
- 48Tripathy, A.; Sharma, P.; Sahoo, N.; Pramanik, S.; Abu Osman, N. A. Sens. Actuat. B-Chem. 2018, 262, 211.
- 49Moradi, A.; Ataollahi, F.; Sayar, K.; Pramanik, S.; Chong, P. P.; Khalil, A. A.; Kamarul, T.; Pingguan-Murphy, B. J. Biomed. Mater. Res. Part A. 2016, 104(1), 245.
- 50Pramanik, S.; Kar, K. K. J. Appl. Polym. Sci. 2012, 123(2), 1100.